Let's solve the equation \( \frac{x^2 - 5}{2} - \frac{x - 8}{5} = 3 \).
1. Eliminate the fractions by finding the least common multiple (LCM) of the denominators (2 and 5), which is 10. Multiply through by 10:
\[ 10 \cdot \left( \frac{x^2 - 5}{2} \right) - 10 \cdot \left( \frac{x - 8}{5} \right) = 10 \cdot 3. \]
2. Simplify each term:
\[ 5(x^2 - 5) - 2(x - 8) = 30. \]
3. Expand the terms:
\[ 5x^2 - 25 - 2x + 16 = 30. \]
4. Combine like terms:
\[ 5x^2 - 2x - 9 = 30. \]
5. Subtract 30 from both sides to set the equation to 0:
\[ 5x^2 - 2x - 39 = 0. \]
6. This is a quadratic equation. Solve it using the quadratic formula:
\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \]
where \( a = 5 \), \( b = -2 \), \( c = -39 \).
7. Calculate the discriminant \( \Delta = b^2 - 4ac \):
\[ \Delta = (-2)^2 - 4(5)(-39) = 4 + 780 = 784. \]
8. Calculate the roots:
\[ x = \frac{-(-2) \pm \sqrt{784}}{2 \cdot 5} = \frac{2 \pm 28}{10}. \]
9. Simplify the roots:
\[ x_1 = \frac{2 + 28}{10} = 3, \]
\[ x_2 = \frac{2 - 28}{10} = -2.6. \]
Thus, the solutions are \( x_1 = 3 \) and \( x_2 = -2.6 \).