a) \(\frac{1}{5}\) и \(\frac{3}{25}\)
Приведем первую дробь к знаменателю 25: \(\frac{1}{5} = \frac{1 \cdot 5}{5 \cdot 5} = \frac{5}{25}\)
Сравним: \(\frac{5}{25} > \frac{3}{25}\), значит \(\frac{1}{5} > \frac{3}{25}\)
б) \(\frac{3}{4}\) и \(\frac{11}{12}\)
Приведем первую дробь к знаменателю 12: \(\frac{3}{4} = \frac{3 \cdot 3}{4 \cdot 3} = \frac{9}{12}\)
Сравним: \(\frac{9}{12} < \frac{11}{12}\), значит \(\frac{3}{4} < \frac{11}{12}\)
в) \(\frac{3}{4}\) и \(\frac{13}{20}\)
Приведем первую дробь к знаменателю 20: \(\frac{3}{4} = \frac{3 \cdot 5}{4 \cdot 5} = \frac{15}{20}\)
Сравним: \(\frac{15}{20} > \(\frac{13}{20}\), значит \(\frac{3}{4} > \frac{13}{20}\)
г) \(\frac{4}{9}\) и \(\frac{16}{36}\)
Приведем первую дробь к знаменателю 36: \(\frac{4}{9} = \frac{4 \cdot 4}{9 \cdot 4} = \frac{16}{36}\)
Сравним: \(\frac{16}{36} = \frac{16}{36}\), значит \(\frac{4}{9} = \frac{16}{36}\)
д) \(\frac{3}{8}\) и \(\frac{7}{12}\)
Приведем дроби к общему знаменателю 24: \(\frac{3}{8} = \frac{3 \cdot 3}{8 \cdot 3} = \frac{9}{24}\), \(\frac{7}{12} = \frac{7 \cdot 2}{12 \cdot 2} = \frac{14}{24}\)
Сравним: \(\frac{9}{24} < \frac{14}{24}\), значит \(\frac{3}{8} < \frac{7}{12}\)
e) \(\frac{7}{12}\) и \(\frac{7}{16}\)
У этих дробей одинаковые числители, значит, больше та дробь, у которой знаменатель меньше.
Сравним: \(12 < 16\), значит \(\frac{7}{12} > \frac{7}{16}\)
а) \(\frac{1}{2} + \frac{1}{3}\) = \(\frac{1 \cdot 3 + 1 \cdot 2}{6}\) = \(\frac{3 + 2}{6}\) = \(\frac{5}{6}\)
б) \(\frac{1}{3} + \frac{2}{7}\) = \(\frac{1 \cdot 7 + 2 \cdot 3}{21}\) = \(\frac{7 + 6}{21}\) = \(\frac{13}{21}\)
в) \(\frac{2}{5} + \frac{1}{3}\) = \(\frac{2 \cdot 3 + 1 \cdot 5}{15}\) = \(\frac{6 + 5}{15}\) = \(\frac{11}{15}\)
г) \(\frac{3}{7} + \frac{4}{9}\) = \(\frac{3 \cdot 9 + 4 \cdot 7}{63}\) = \(\frac{27 + 28}{63}\) = \(\frac{55}{63}\)
д) \(\frac{5}{9} - \frac{1}{6}\) = \(\frac{5 \cdot 2 - 1 \cdot 3}{18}\) = \(\frac{10 - 3}{18}\) = \(\frac{7}{18}\)
е) \(\frac{3}{4} - \frac{1}{3}\) = \(\frac{3 \cdot 3 - 1 \cdot 4}{12}\) = \(\frac{9 - 4}{12}\) = \(\frac{5}{12}\)
ж) \(\frac{1}{6} + \frac{1}{3}\) = \(\frac{1 + 1 \cdot 2}{6}\) = \(\frac{1 + 2}{6}\) = \(\frac{3}{6}\) = \(\frac{1}{2}\)
з) \(\frac{9}{5} - \frac{7}{10}\) = \(\frac{9 \cdot 2 - 7}{10}\) = \(\frac{18 - 7}{10}\) = \(\frac{11}{10}\) = 1 \(\frac{1}{10}\)
и) \(\frac{1}{2} - \frac{3}{8}\) = \(\frac{1 \cdot 4 - 3}{8}\) = \(\frac{4 - 3}{8}\) = \(\frac{1}{8}\)
к) \(\frac{7}{15} - \frac{3}{10}\) = \(\frac{7 \cdot 2 - 3 \cdot 3}{30}\) = \(\frac{14 - 9}{30}\) = \(\frac{5}{30}\) = \(\frac{1}{6}\)
л) \(\frac{3}{8} + \frac{5}{12}\) = \(\frac{3 \cdot 3 + 5 \cdot 2}{24}\) = \(\frac{9 + 10}{24}\) = \(\frac{19}{24}\)
м) \(\frac{5}{9} - \frac{1}{6}\) = \(\frac{5 \cdot 2 - 1 \cdot 3}{18}\) = \(\frac{10 - 3}{18}\) = \(\frac{7}{18}\)
н) \(\frac{5}{11} + \frac{3}{5}\) = \(\frac{5 \cdot 5 + 3 \cdot 11}{55}\) = \(\frac{25 + 33}{55}\) = \(\frac{58}{55}\) = 1 \(\frac{3}{55}\)
о) \(\frac{17}{30} - \frac{3}{6}\) = \(\frac{17 - 3 \cdot 5}{30}\) = \(\frac{17 - 15}{30}\) = \(\frac{2}{30}\) = \(\frac{1}{15}\)
п) \(\frac{17}{35} - \frac{4}{15}\) = \(\frac{17 \cdot 3 - 4 \cdot 7}{105}\) = \(\frac{51 - 28}{105}\) = \(\frac{23}{105}\)
Ответ: См. решение