Для решения задачи необходимо воспользоваться формулой давления:
$$P = \frac{F}{A}$$, где
P - давление (в паскалях),
F - сила, действующая на поверхность (в ньютонах),
A - площадь поверхности (в квадратных метрах).
1. Определим силу, с которой трактор давит на грунт. Сила равна весу трактора. Вес определяется по формуле:
$$F = mg$$, где
m - масса трактора (в килограммах),
g - ускорение свободного падения (приближенно равно 9.8 м/с²).
2. Переведем массу трактора из тонн в килограммы:
5 тонн = 5000 кг.
3. Вычислим силу (вес трактора):
$$F = 5000 \text{ кг} \cdot 9.8 \text{ м/с}^2 = 49000 \text{ Н}$$.
4. Вычислим давление трактора на грунт:
$$P = \frac{49000 \text{ Н}}{1 \text{ м}^2} = 49000 \text{ Па}$$.
5. Переведем давление из паскалей в килопаскали (1 кПа = 1000 Па):
$$P = \frac{49000 \text{ Па}}{1000} = 49 \text{ кПа}$$.
Ответ: 49