Решим квадратные уравнения Варианта 3.
-2x² + 5x + 3 = 0
2x² - 5x - 3 = 0
D = (-5)² - 4 × 2 × (-3) = 25 + 24 = 49
x₁ = (5 + √49) / (2 × 2) = (5 + 7) / 4 = 12 / 4 = 3
x₂ = (5 - √49) / (2 × 2) = (5 - 7) / 4 = -2 / 4 = -1/2
Ответ: x₁ = 3, x₂ = -1/2
x² - 22x - 23 = 0
D = (-22)² - 4 × 1 × (-23) = 484 + 92 = 576
x₁ = (22 + √576) / (2 × 1) = (22 + 24) / 2 = 46 / 2 = 23
x₂ = (22 - √576) / (2 × 1) = (22 - 24) / 2 = -2 / 2 = -1
Ответ: x₁ = 23, x₂ = -1
x² - 2x + 5 = 0
D = (-2)² - 4 × 1 × 5 = 4 - 20 = -16
Т.к. D < 0, то уравнение не имеет действительных корней.
Ответ: нет действительных корней
x² + 6x + 8 = 0
D = 6² - 4 × 1 × 8 = 36 - 32 = 4
x₁ = (-6 + √4) / (2 × 1) = (-6 + 2) / 2 = -4 / 2 = -2
x₂ = (-6 - √4) / (2 × 1) = (-6 - 2) / 2 = -8 / 2 = -4
Ответ: x₁ = -2, x₂ = -4
x² - 34x + 289 = 0
D = (-34)² - 4 × 1 × 289 = 1156 - 1156 = 0
x = 34 / (2 × 1) = 17
Ответ: x = 17
5x² - 8x + 3 = 0
D = (-8)² - 4 × 5 × 3 = 64 - 60 = 4
x₁ = (8 + √4) / (2 × 5) = (8 + 2) / 10 = 10 / 10 = 1
x₂ = (8 - √4) / (2 × 5) = (8 - 2) / 10 = 6 / 10 = 3 / 5
Ответ: x₁ = 1, x₂ = 3/5
3x² - 8x + 5 = 0
D = (-8)² - 4 × 3 × 5 = 64 - 60 = 4
x₁ = (8 + √4) / (2 × 3) = (8 + 2) / 6 = 10 / 6 = 5 / 3
x₂ = (8 - √4) / (2 × 3) = (8 - 2) / 6 = 6 / 6 = 1
Ответ: x₁ = 5/3, x₂ = 1
5x² + 26x - 24 = 0
D = 26² - 4 × 5 × (-24) = 676 + 480 = 1156
x₁ = (-26 + √1156) / (2 × 5) = (-26 + 34) / 10 = 8 / 10 = 4 / 5
x₂ = (-26 - √1156) / (2 × 5) = (-26 - 34) / 10 = -60 / 10 = -6
Ответ: x₁ = 4/5, x₂ = -6
x² = 4x + 96
x² - 4x - 96 = 0
D = (-4)² - 4 × 1 × (-96) = 16 + 384 = 400
x₁ = (4 + √400) / (2 × 1) = (4 + 20) / 2 = 24 / 2 = 12
x₂ = (4 - √400) / (2 × 1) = (4 - 20) / 2 = -16 / 2 = -8
Ответ: x₁ = 12, x₂ = -8
25 = 26x - x²
x² - 26x + 25 = 0
D = (-26)² - 4 × 1 × 25 = 676 - 100 = 576
x₁ = (26 + √576) / (2 × 1) = (26 + 24) / 2 = 50 / 2 = 25
x₂ = (26 - √576) / (2 × 1) = (26 - 24) / 2 = 2 / 2 = 1
Ответ: x₁ = 25, x₂ = 1
x² - 5x + 3 = 0
D = (-5)² - 4 × 1 × 3 = 25 - 12 = 13
x₁ = (5 + √13) / (2 × 1) = (5 + √13) / 2
x₂ = (5 - √13) / (2 × 1) = (5 - √13) / 2
Ответ: x₁ = (5 + √13) / 2, x₂ = (5 - √13) / 2
x² + 6x + 3 = 0
D = 6² - 4 × 1 × 3 = 36 - 12 = 24
x₁ = (-6 + √24) / (2 × 1) = (-6 + 2√6) / 2 = -3 + √6
x₂ = (-6 - √24) / (2 × 1) = (-6 - 2√6) / 2 = -3 - √6
Ответ: x₁ = -3 + √6, x₂ = -3 - √6
x² - 12x = 0
x(x - 12) = 0
x₁ = 0
x - 12 = 0
x = 12
x₂ = 12
Ответ: x₁ = 0, x₂ = 12
-x² + 7x = 0
x(-x + 7) = 0
x₁ = 0
-x + 7 = 0
x = 7
x₂ = 7
Ответ: x₁ = 0, x₂ = 7
x² - 49 = 0
x² = 49
x₁ = √49 = 7
x₂ = -√49 = -7
Ответ: x₁ = 7, x₂ = -7
-5x² + 9 = 0
5x² = 9
x² = 9 / 5
x₁ = √(9 / 5) = 3 / √5 = (3√5) / 5
x₂ = -√(9 / 5) = -3 / √5 = (-3√5) / 5
Ответ: x₁ = (3√5) / 5, x₂ = (-3√5) / 5
81x² = 0
x² = 0
x = 0
Ответ: x = 0
3x² - 75 = 0
3x² = 75
x² = 25
x₁ = √25 = 5
x₂ = -√25 = -5
Ответ: x₁ = 5, x₂ = -5
8x(1 + 2x) = -1
8x + 16x² = -1
16x² + 8x + 1 = 0
D = 8² - 4 × 16 × 1 = 64 - 64 = 0
x = -8 / (2 × 16) = -8 / 32 = -1 / 4
Ответ: x = -1/4
5(x + 2)² - 6x - 44
5(x² + 4x + 4) - 6x - 44 = 0
5x² + 20x + 20 - 6x - 44 = 0
5x² + 14x - 24 = 0
D = 14² - 4 × 5 × (-24) = 196 + 480 = 676
x₁ = (-14 + √676) / (2 × 5) = (-14 + 26) / 10 = 12 / 10 = 6 / 5
x₂ = (-14 - √676) / (2 × 5) = (-14 - 26) / 10 = -40 / 10 = -4
Ответ: x₁ = 6/5, x₂ = -4