Тренажер «Квадратные уравнения»
Вариант 2
-x2+4x+3=0
x2-4x-3=0
D = (-4)2-4·1·(-3) = 16+12 = 28
x1 = $$\frac{4+\sqrt{28}}{2}$$ = $$\frac{4+2\sqrt{7}}{2}$$ = 2+$$\sqrt{7}$$
x2 = $$\frac{4-\sqrt{28}}{2}$$ = $$\frac{4-2\sqrt{7}}{2}$$ = 2-$$\sqrt{7}$$
Ответ: x1 = 2+$$\sqrt{7}$$, x2 = 2-$$\sqrt{7}$$
36x2-12x+1=0
(6x-1)2=0
6x-1=0
6x=1
x = $$\frac{1}{6}$$
Ответ: $$\frac{1}{6}$$
x2-2x-15=0
D = (-2)2-4·1·(-15) = 4+60 = 64
x1 = $$\frac{2+\sqrt{64}}{2}$$ = $$\frac{2+8}{2}$$ = 5
x2 = $$\frac{2-\sqrt{64}}{2}$$ = $$\frac{2-8}{2}$$ = -3
Ответ: x1 = 5, x2 = -3
x2+8x+7=0
D = 82-4·1·7 = 64-28 = 36
x1 = $$\frac{-8+\sqrt{36}}{2}$$ = $$\frac{-8+6}{2}$$ = -1
x2 = $$\frac{-8-\sqrt{36}}{2}$$ = $$\frac{-8-6}{2}$$ = -7
Ответ: x1 = -1, x2 = -7
3x2-3x+4=0
D = (-3)2-4·3·4 = 9-48 = -39
D < 0, значит, корней нет.
Ответ: Нет корней
25x2+10x+1=0
(5x+1)2=0
5x+1=0
5x=-1
x = -$$\frac{1}{5}$$ = -0,2
Ответ: -0,2
100x2-160x+63=0
D = (-160)2-4·100·63 = 25600-25200 = 400
x1 = $$\frac{160+\sqrt{400}}{200}$$ = $$\frac{160+20}{200}$$ = $$\frac{180}{200}$$ = 0,9
x2 = $$\frac{160-\sqrt{400}}{200}$$ = $$\frac{160-20}{200}$$ = $$\frac{140}{200}$$ = 0,7
Ответ: x1 = 0,9, x2 = 0,7
6x2+7x=5
6x2+7x-5=0
D = 72-4·6·(-5) = 49+120 = 169
x1 = $$\frac{-7+\sqrt{169}}{12}$$ = $$\frac{-7+13}{12}$$ = $$\frac{6}{12}$$ = 0,5
x2 = $$\frac{-7-\sqrt{169}}{12}$$ = $$\frac{-7-13}{12}$$ = -$$\frac{20}{12}$$ = -$$\frac{5}{3}$$ = -1$$\frac{2}{3}$$
Ответ: x1 = 0,5, x2 = -1$$\frac{2}{3}$$
-3x2+5=2x
-3x2-2x+5=0
3x2+2x-5=0
D = 22-4·3·(-5) = 4+60 = 64
x1 = $$\frac{-2+\sqrt{64}}{6}$$ = $$\frac{-2+8}{6}$$ = $$\frac{6}{6}$$ = 1
x2 = $$\frac{-2-\sqrt{64}}{6}$$ = $$\frac{-2-8}{6}$$ = -$$\frac{10}{6}$$ = -$$\frac{5}{3}$$ = -1$$\frac{2}{3}$$
Ответ: x1 = 1, x2 = -1$$\frac{2}{3}$$
2x2+3x-1=0
D = 32-4·2·(-1) = 9+8 = 17
x1 = $$\frac{-3+\sqrt{17}}{4}$$
x2 = $$\frac{-3-\sqrt{17}}{4}$$
Ответ: x1 = $$\frac{-3+\sqrt{17}}{4}$$, x2 = $$\frac{-3-\sqrt{17}}{4}$$
2x2-4x-1=0
D = (-4)2-4·2·(-1) = 16+8 = 24
x1 = $$\frac{4+\sqrt{24}}{4}$$ = $$\frac{4+2\sqrt{6}}{4}$$ = 1+$$\frac{\sqrt{6}}{2}$$
x2 = $$\frac{4-\sqrt{24}}{4}$$ = $$\frac{4-2\sqrt{6}}{4}$$ = 1-$$\frac{\sqrt{6}}{2}$$
Ответ: x1 = 1+$$\frac{\sqrt{6}}{2}$$, x2 = 1-$$\frac{\sqrt{6}}{2}$$
x2+5x=0
x(x+5)=0
x1=0
x+5=0
x2=-5
Ответ: x1 = 0, x2 = -5
2x2-9x=0
x(2x-9)=0
x1=0
2x-9=0
2x=9
x2=4,5
Ответ: x1 = 0, x2 = 4,5
-x2+8x=0
x(-x+8)=0
x1=0
-x+8=0
-x=-8
x2=8
Ответ: x1 = 0, x2 = 8
3x-x2=0
x(3-x)=0
x1=0
3-x=0
-x=-3
x2=3
Ответ: x1 = 0, x2 = 3
x2-9=0
x2=9
x1=3
x2=-3
Ответ: x1 = 3, x2 = -3
25x2=0
x=0
Ответ: 0
-2x2+11=0
-2x2=-11
x2=5,5
x1=$$\sqrt{5,5}$$
x2=-$$\sqrt{5,5}$$
Ответ: x1 = $$\sqrt{5,5}$$, x2 = -$$\sqrt{5,5}$$
2x(x-8)=-x-18
2x2-16x=-x-18
2x2-15x+18=0
D = (-15)2-4·2·18 = 225-144 = 81
x1 = $$\frac{15+\sqrt{81}}{4}$$ = $$\frac{15+9}{4}$$ = 6
x2 = $$\frac{15-\sqrt{81}}{4}$$ = $$\frac{15-9}{4}$$ = $$\frac{6}{4}$$ = 1,5
Ответ: x1 = 6, x2 = 1,5
(3x-1)(x+3)+1=x(1+6x)
3x2+9x-x-3+1=x+6x2
3x2+8x-2-x-6x2=0
-3x2+7x-2=0
3x2-7x+2=0
D = (-7)2-4·3·2 = 49-24 = 25
x1 = $$\frac{7+\sqrt{25}}{6}$$ = $$\frac{7+5}{6}$$ = 2
x2 = $$\frac{7-\sqrt{25}}{6}$$ = $$\frac{7-5}{6}$$ = $$\frac{2}{6}$$ = $$\frac{1}{3}$$
Ответ: x1 = 2, x2 = $$\frac{1}{3}$$