tgx = 1
x = \(\frac{\pi}{4} + \pi k, k \in Z\)
Ответ: x = \(\frac{\pi}{4} + \pi k, k \in Z\)
cos2x = \(\frac{\sqrt{3}}{2}\)
2x = ±\(\frac{\pi}{6} + 2\pi k, k \in Z\)
x = ±\(\frac{\pi}{12} + \pi k, k \in Z\)
Ответ: x = ±\(\frac{\pi}{12} + \pi k, k \in Z\)
sin(\( \frac{3\pi}{2} + x\)) = \(\frac{\sqrt{2}}{2}\)
\( \frac{3\pi}{2} + x\) = (-1)^k \(\frac{\pi}{4} + \pi k, k \in Z\)
x = (-1)^k \(\frac{\pi}{4} + \pi k - \frac{3\pi}{2}, k \in Z\)
x = (-1)^k \(\frac{\pi}{4} + \pi k - \frac{6\pi}{4}, k \in Z\)
x = (-1)^k \(\frac{\pi}{4} + \pi k - \frac{3\pi}{2}, k \in Z\)
x = (-1)^k \(\frac{\pi}{4}\) + \(\pi k - \frac{3\pi}{2}\), k \(\in\) Z
Ответ: x = (-1)^k \(\frac{\pi}{4}\) + \(\pi k - \frac{3\pi}{2}\), k \(\in\) Z
ctg(\( \frac{3\pi}{2} + x\)) = -\(\sqrt{3}\)
\( \frac{3\pi}{2} + x\) = -\(\frac{\pi}{6} + \pi k, k \in Z\)
x = -\(\frac{\pi}{6} + \pi k - \frac{3\pi}{2}, k \in Z\)
x = -\(\frac{\pi}{6} + \pi k - \frac{9\pi}{6}, k \in Z\)
x = -\(\frac{10\pi}{6} + \pi k, k \in Z\)
x = -\(\frac{5\pi}{3} + \pi k, k \in Z\)
Ответ: x = -\(\frac{5\pi}{3} + \pi k, k \in Z\)
4sin \(\frac{x}{4}\)cos \(\frac{x}{4}\) = -\(\sqrt{2}\)
2 \cdot 2 sin \(\frac{x}{4}\)cos \(\frac{x}{4}\) = -\(\sqrt{2}\)
2 sin \(\frac{x}{2}\) = -\(\sqrt{2}\)
sin \(\frac{x}{2}\) = -\(\frac{\sqrt{2}}{2}\)
\(\frac{x}{2}\) = (-1)^{k+1} \(\frac{\pi}{4}\) + \(\pi k, k \in Z\)
x = (-1)^{k+1} \(\frac{\pi}{2}\) + 2\(\pi k, k \in Z\)
Ответ: x = (-1)^{k+1} \(\frac{\pi}{2}\) + 2\(\pi k, k \in Z\)
cos²3x - sin²3x = -1
cos(6x) = -1
6x = \(\pi + 2 \pi k, k \in Z\)
x = \(\frac{\pi}{6} + \frac{\pi k}{3}, k \in Z\)
Ответ: x = \(\frac{\pi}{6} + \frac{\pi k}{3}, k \in Z\)
2sin(\( \frac{\pi}{6} - x\)) = 1
sin(\( \frac{\pi}{6} - x\)) = \(\frac{1}{2}\)
\(\frac{\pi}{6} - x\) = (-1)^k \(\frac{\pi}{6} + \pi k, k \in Z\)
x = \(\frac{\pi}{6}\) - (-1)^k \(\frac{\pi}{6} + \pi k, k \in Z\)
Ответ: x = \(\frac{\pi}{6}\) - (-1)^k \(\frac{\pi}{6} + \pi k, k \in Z\)
У тебя все получится! Главное - не бояться трудностей и верить в свои силы!