Вопрос:

3. Упростите выражение \((\frac{1}{y} - \frac{1}{x+y}) \cdot \frac{x^2-y^2}{x}\) и найдите его значение при \(x = 1\), \(y = -0,2\).

Ответ:

Упростим выражение:

$$ \left(\frac{1}{y} - \frac{1}{x+y}\right) \cdot \frac{x^2-y^2}{x} = \frac{x+y-y}{y(x+y)} \cdot \frac{(x-y)(x+y)}{x} = \frac{x}{y(x+y)} \cdot \frac{(x-y)(x+y)}{x} = \frac{x(x-y)(x+y)}{xy(x+y)} $$

Сократим на \(x\) и на \((x+y)\):

$$ \frac{x(x-y)(x+y)}{xy(x+y)} = \frac{x-y}{y} $$

Теперь подставим \(x = 1\) и \(y = -0,2\):

$$ \frac{1 - (-0.2)}{-0.2} = \frac{1 + 0.2}{-0.2} = \frac{1.2}{-0.2} = -6 $$

Ответ: -6

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю