Давай разберем по порядку каждое задание.
1. Упростите выражение:
1) a) \(2.8 \cdot 5a = 14a\)
б) \(-3.5a \cdot 4 = -14a\)
в) \(3.6 \cdot 0.8a = 2.88a\)
г) \(-8a \cdot (-12) = 96a\)
2) a) \(8x \cdot (-3a) = -24ax\)
б) \(3.5x \cdot 2y = 7xy\)
в) \(-0.25y \cdot 8b = -2by\)
г) \(\frac{3}{7}p \cdot \frac{7}{9}q = \frac{3 \cdot 7}{7 \cdot 9}pq = \frac{1}{3}pq\)
2. Приведите подобные слагаемые:
1) a) \(2a + 3a = 5a\)
б) \(7x - 15x = -8x\)
в) \(-17b - 3b = -20b\)
г) \(-2.1y + 7y = 4.9y\)
д) \(-2.5x + x = -1.5x\)
e) \(-a - 0.8a = -1.8a\)
ж) \(\frac{1}{3}x - 2x = \frac{1}{3}x - \frac{6}{3}x = -\frac{5}{3}x\)
з) \(\frac{1}{2}a + \frac{1}{5}a = \frac{5}{10}a + \frac{2}{10}a = \frac{7}{10}a\)
и) \(\frac{5}{6}b - b = \frac{5}{6}b - \frac{6}{6}b = -\frac{1}{6}b\)
2) a) \(8b + 12b - 21b + b = (8 + 12 - 21 + 1)b = 0b = 0\)
б) \(-13c + 12c + 40c - 18c = (-13 + 12 + 40 - 18)c = 21c\)
3) a) \(10a - a - b + 7b = (10 - 1)a + (-1 + 7)b = 9a + 6b\)
б) \(-15c - 15a + 8a + 4c = (-15 + 4)c + (-15 + 8)a = -11c - 7a\)
в) \(0.3x + 1.6y - 0.3x - 0.4y = (0.3 - 0.3)x + (1.6 - 0.4)y = 0x + 1.2y = 1.2y\)
г) \(x + y - x - y + 4 = (x - x) + (y - y) + 4 = 0 + 0 + 4 = 4\)
д) \(5 - a + 4a - b - 6a = 5 + (-1 + 4 - 6)a - b = 5 - 3a - b\)
e) \(1.2c + 1 - 0.6y - 0.8 - 0.2c = (1.2 - 0.2)c - 0.6y + (1 - 0.8) = c - 0.6y + 0.2\)
3. Раскройте скобки:
1) a) \(c + (a + b) = c + a + b\)
б) \(c - (a - b) = c - a + b\)
в) \(c - (a + b) = c - a - b\)
г) \(-c - (-a + b) = -c + a - b\)
2) a) \((a - b) - (c - d) = a - b - c + d\)
б) \((a - b) + (c - d) = a - b + c - d\)
в) \(x - (a - b) + (c - d) = x - a + b + c - d\)
г) \(10 - (a - b) - (c + d) = 10 - a + b - c - d\)
4. Раскройте скобки и приведите подобные слагаемые:
1) a) \(3b + (5a - 7b) = 3b + 5a - 7b = 5a - 4b\)
б) \(-3q - (8p - 3q) = -3q - 8p + 3q = -8p\)
2) a) \((2 + 3a) + (7a - 2) = 2 + 3a + 7a - 2 = 10a\)
б) \(-(11a + b) - (12a - 3b) = -11a - b - 12a + 3b = -23a + 2b\)
3) a) \(a + (a - 10) - (12 + a) = a + a - 10 - 12 - a = a - 22\)
б) \((6x - 8) - 5x - (4 - 9x) = 6x - 8 - 5x - 4 + 9x = 10x - 12\)
в) \(5x + (11 - 7x) = 5x + 11 - 7x = -2x + 11\)
г) \(-(8c - 4) + 4 = -8c + 4 + 4 = -8c + 8\)
в) \((5 - 3b) + (3b - 11) = 5 - 3b + 3b - 11 = -6\)
г) \((5a - 3b) - (2 + 5a - 3b) = 5a - 3b - 2 - 5a + 3b = -2\)
в) \((1 - 9y) - (22y - 4) - 5 = 1 - 9y - 22y + 4 - 5 = -31y\)
г) \(5b - (6b + a) - (a - 6b) = 5b - 6b - a - a + 6b = 5b - 2a\)
5. Упростите выражение:
1) a) \(3(8a - 4) + 6a = 24a - 12 + 6a = 30a - 12\)
б) \(11c + 5(8 - c) = 11c + 40 - 5c = 6c + 40\)
в) \(2(y - 1) - 2y + 12 = 2y - 2 - 2y + 12 = 10\)
г) \(16 + 3(2 - 3y) + 8y = 16 + 6 - 9y + 8y = 22 - y\)
2) a) \(7p - 2(3p - 1) = 7p - 6p + 2 = p + 2\)
б) \(-4(3a + 2) + 8 = -12a - 8 + 8 = -12a\)
в) \(3 - 17a - 11(2a - 3) = 3 - 17a - 22a + 33 = 36 - 39a\)
г) \(15 - 5(1 - a) - 6a = 15 - 5 + 5a - 6a = 10 - a\)
6. Раскройте скобки и упростите:
a) \(a - (a - (2a - 4)) = a - (a - 2a + 4) = a - (-a + 4) = a + a - 4 = 2a - 4\)
б) \(7x - ((y - x) + 3y) = 7x - (y - x + 3y) = 7x - (4y - x) = 7x - 4y + x = 8x - 4y\)
в) \(4y - (3y - (2y - (y + 1))) = 4y - (3y - (2y - y - 1)) = 4y - (3y - (y - 1)) = 4y - (3y - y + 1) = 4y - (2y + 1) = 4y - 2y - 1 = 2y - 1\)
г) \(5c - (2c - ((b - c) - 2b)) = 5c - (2c - (b - c - 2b)) = 5c - (2c - (-b - c)) = 5c - (2c + b + c) = 5c - (3c + b) = 5c - 3c - b = 2c - b\)
7. Найдите значение выражения:
a) \(0.6a + 0.4(a - 55)\) при \(a = -8.3\):
\(0.6(-8.3) + 0.4(-8.3 - 55) = -4.98 + 0.4(-63.3) = -4.98 - 25.32 = -30.3\)
б) \(1.3(2a - 1) - 16.4\) при \(a = 6.5\):
\(1.3(2(6.5) - 1) - 16.4 = 1.3(13 - 1) - 16.4 = 1.3(12) - 16.4 = 15.6 - 16.4 = -0.8\)
в) \(1.2(a - 7) - 1.8(3 - a)\) при \(a = 4\frac{1}{3} = \frac{13}{3}\):
\(1.2(\frac{13}{3} - 7) - 1.8(3 - \frac{13}{3}) = 1.2(\frac{13}{3} - \frac{21}{3}) - 1.8(\frac{9}{3} - \frac{13}{3}) = 1.2(-\frac{8}{3}) - 1.8(-\frac{4}{3}) = -\frac{9.6}{3} + \frac{7.2}{3} = -\frac{2.4}{3} = -0.8\)
г) \(2\frac{1}{3}(a + 6) - 7\frac{2}{3}(3 - a)\) при \(a = -0.7\):
\(\frac{7}{3}(-0.7 + 6) - \frac{23}{3}(3 - (-0.7)) = \frac{7}{3}(5.3) - \frac{23}{3}(3.7) = \frac{37.1}{3} - \frac{85.1}{3} = \frac{-48}{3} = -16\)
Ответ: Выше приведены решения всех заданий.