Решим каждое выражение по отдельности:
а) $$3\frac{4}{7}-2\frac{3}{5} = \frac{3\cdot7+4}{7} - \frac{2\cdot5+3}{5} = \frac{25}{7} - \frac{13}{5} = \frac{25\cdot5 - 13\cdot7}{35} = \frac{125 - 91}{35} = \frac{34}{35}$$.
Ответ: $$\frac{34}{35}$$
б) $$6\frac{5}{6}+2\frac{3}{8} = \frac{6\cdot6+5}{6} + \frac{2\cdot8+3}{8} = \frac{41}{6} + \frac{19}{8} = \frac{41\cdot4 + 19\cdot3}{24} = \frac{164 + 57}{24} = \frac{221}{24} = 9\frac{5}{24}$$.
Ответ: $$9\frac{5}{24}$$
в) $$4\frac{5}{14}+\left(5\frac{5}{12}-3\frac{3}{4}\right) = 4\frac{5}{14}+\left(\frac{5\cdot12+5}{12}-\frac{3\cdot4+3}{4}\right) = 4\frac{5}{14}+\left(\frac{65}{12}-\frac{15}{4}\right) = 4\frac{5}{14}+\left(\frac{65}{12}-\frac{15\cdot3}{4\cdot3}\right) = 4\frac{5}{14}+\left(\frac{65}{12}-\frac{45}{12}\right) = 4\frac{5}{14} + \frac{20}{12} = 4\frac{5}{14} + \frac{5}{3} = \frac{4\cdot14+5}{14} + \frac{5}{3} = \frac{61}{14} + \frac{5}{3} = \frac{61\cdot3 + 5\cdot14}{42} = \frac{183 + 70}{42} = \frac{253}{42} = 6\frac{1}{42}$$.
Ответ: $$6\frac{1}{42}$$