а) \[ \sqrt{25 \cdot 9} = \sqrt{25} \cdot \sqrt{9} = 5 \cdot 3 = 15 \]
б) \[ \sqrt{0.04 \cdot 81} = \sqrt{0.04} \cdot \sqrt{81} = 0.2 \cdot 9 = 1.8 \]
в) \[ \sqrt{36 \cdot 0.09 \cdot 25} = \sqrt{36} \cdot \sqrt{0.09} \cdot \sqrt{25} = 6 \cdot 0.3 \cdot 5 = 9 \]
г) \[ \sqrt{\frac{169}{25}} = \frac{\sqrt{169}}{\sqrt{25}} = \frac{13}{5} = 2.6 \]
д) \[ \sqrt{\frac{0.64 \cdot 49}{25}} = \frac{\sqrt{0.64} \cdot \sqrt{49}}{\sqrt{25}} = \frac{0.8 \cdot 7}{5} = \frac{5.6}{5} = 1.12 \]
e) \[ 0.81 \cdot \sqrt{\frac{4}{25}} = 0.81 \cdot \frac{\sqrt{4}}{\sqrt{25}} = 0.81 \cdot \frac{2}{5} = 0.81 \cdot 0.4 = 0.324 \]
ж) \[ 3(\sqrt{2})^2 - \frac{1}{3}(\sqrt{3})^2 = 3 \cdot 2 - \frac{1}{3} \cdot 3 = 6 - 1 = 5 \]
а) \[ \sqrt{2} \cdot \sqrt{22} \cdot \sqrt{11} = \sqrt{2 \cdot 22 \cdot 11} = \sqrt{2 \cdot 2 \cdot 11 \cdot 11} = \sqrt{2^2 \cdot 11^2} = 2 \cdot 11 = 22 \]
б) \[ \frac{\sqrt{98}}{\sqrt{2}} - \frac{\sqrt{27}}{\sqrt{3}} = \sqrt{\frac{98}{2}} - \sqrt{\frac{27}{3}} = \sqrt{49} - \sqrt{9} = 7 - 3 = 4 \]
в) \[ 60 \cdot \frac{\sqrt{5}}{\sqrt{3}} = 60 \cdot \sqrt{\frac{5}{3}} = 60 \sqrt{\frac{5}{3} \cdot \frac{3}{3}} = 60 \sqrt{\frac{15}{9}} = \frac{60}{3} \sqrt{15} = 20\sqrt{15} \]
г) \[ \frac{1}{3} \sqrt{\frac{13}{25}} \cdot \sqrt{\frac{13}{3}} = \frac{1}{3} \sqrt{\frac{13}{25} \cdot \frac{13}{3}} = \frac{1}{3} \sqrt{\frac{169}{75}} = \frac{1}{3} \cdot \frac{13}{\sqrt{75}} = \frac{13}{3\sqrt{25 \cdot 3}} = \frac{13}{3 \cdot 5 \sqrt{3}} = \frac{13}{15\sqrt{3}} = \frac{13 \sqrt{3}}{15 \cdot 3} = \frac{13\sqrt{3}}{45} \]
а) \[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3} \]
б) \[ \sqrt{28} = \sqrt{4 \cdot 7} = \sqrt{4} \cdot \sqrt{7} = 2\sqrt{7} \]
в) \[ \sqrt{500} = \sqrt{100 \cdot 5} = \sqrt{100} \cdot \sqrt{5} = 10\sqrt{5} \]
г) \[ \sqrt{54} = \sqrt{9 \cdot 6} = \sqrt{9} \cdot \sqrt{6} = 3\sqrt{6} \]
д) \[ \sqrt{44} = \sqrt{4 \cdot 11} = \sqrt{4} \cdot \sqrt{11} = 2\sqrt{11} \]
e) \[ \sqrt{5^4 \cdot 7} = \sqrt{5^4} \cdot \sqrt{7} = 5^2 \sqrt{7} = 25\sqrt{7} \]
ж) \[ 3 \sqrt{6 \cdot 2} = 3 \sqrt{12} = 3 \sqrt{4 \cdot 3} = 3 \cdot 2 \sqrt{3} = 6\sqrt{3} \]
а) \[ 4\sqrt{2} = \sqrt{4^2 \cdot 2} = \sqrt{16 \cdot 2} = \sqrt{32} \]
б) \[ -3\sqrt{5} = -\sqrt{3^2 \cdot 5} = -\sqrt{9 \cdot 5} = -\sqrt{45} \]
в) \[ \frac{2}{3}\sqrt{63} = \sqrt{\left(\frac{2}{3}\right)^2 \cdot 63} = \sqrt{\frac{4}{9} \cdot 63} = \sqrt{\frac{4 \cdot 7 \cdot 9}{9}} = \sqrt{28} \]
г) \[ \frac{1}{2}\sqrt{8} = \sqrt{\left(\frac{1}{2}\right)^2 \cdot 8} = \sqrt{\frac{1}{4} \cdot 8} = \sqrt{2} \]
д) \[ 4\sqrt{2.5} = \sqrt{4^2 \cdot 2.5} = \sqrt{16 \cdot 2.5} = \sqrt{40} \]
а) \[ \sqrt{3.6} \] и \[ \sqrt{3} \], очевидно, что \[ \sqrt{3.6} > \sqrt{3} \]
б) 7 и \[ 4\sqrt{3} \], \( 7 = \sqrt{49} \), \( 4\sqrt{3} = \sqrt{16 \cdot 3} = \sqrt{48} \). Следовательно, \[ 7 > 4\sqrt{3} \]
в) \( 2.8\sqrt{7} = \sqrt{2.8^2 \cdot 7} = \sqrt{7.84 \cdot 7} = \sqrt{54.88} \), \( \sqrt{63} \). Следовательно, \[ 2.8\sqrt{7} < \sqrt{63} \]
г) \[ 5\sqrt{2} = \sqrt{25 \cdot 2} = \sqrt{50} \] и \[ 4\sqrt{3} = \sqrt{16 \cdot 3} = \sqrt{48} \]. Следовательно, \[ 5\sqrt{2} > 4\sqrt{3} \]
д) \[ \sqrt{6} \cdot 9 = 9\sqrt{6} = \sqrt{81 \cdot 6} = \sqrt{486} \] и \[ \sqrt{18} \cdot \sqrt{3} = \sqrt{18 \cdot 3} = \sqrt{54} \]. Следовательно, \[ \sqrt{6} \cdot 9 > \sqrt{18} \cdot \sqrt{3} \]
а) 11, \( 5\sqrt{5} \), \( 2\sqrt{30} \). \( 11 = \sqrt{121} \), \( 5\sqrt{5} = \sqrt{25 \cdot 5} = \sqrt{125} \), \( 2\sqrt{30} = \sqrt{4 \cdot 30} = \sqrt{120} \). Следовательно, \[ 11 < 2\sqrt{30} < 5\sqrt{5} \]
б) \( -3\sqrt{5} \), \( -4\sqrt{3} \), \( -2\sqrt{11} \). \( -3\sqrt{5} = -\sqrt{9 \cdot 5} = -\sqrt{45} \), \( -4\sqrt{3} = -\sqrt{16 \cdot 3} = -\sqrt{48} \), \( -2\sqrt{11} = -\sqrt{4 \cdot 11} = -\sqrt{44} \). Следовательно, \[ -4\sqrt{3} < -3\sqrt{5} < -2\sqrt{11} \]
в) \( -\frac{2}{3}\sqrt{17} \), \( \frac{1}{2}\sqrt{14} \), -2\(\sqrt{0} \). \( -\frac{2}{3}\sqrt{17} = -\sqrt{\frac{4}{9} \cdot 17} = -\sqrt{\frac{68}{9}} = -\sqrt{7.55} \), \( \frac{1}{2}\sqrt{14} = \sqrt{\frac{1}{4} \cdot 14} = \sqrt{\frac{14}{4}} = \sqrt{3.5} \), \( -2\sqrt{0} = 0 \). Следовательно, \[ -\frac{2}{3}\sqrt{17} < -2\sqrt{0} < \frac{1}{2}\sqrt{14} \]
Ответ: Решения выше.
Ты отлично справился с заданием! Продолжай в том же духе, и у тебя все получится!