1) Вычислите:
2) Решите уравнения:
a) sin(x - $$\frac{\pi}{3}$$) + 1 = 0
sin(x - $$\frac{\pi}{3}$$) = -1
x - $$\frac{\pi}{3}$$ = -$$\frac{\pi}{2}$$ + 2$$\pi$$k, k ∈ Z
x = -$$\frac{\pi}{2}$$ + $$\frac{\pi}{3}$$ + 2$$\pi$$k, k ∈ Z
x = -$$\frac{\pi}{6}$$ + 2$$\pi$$k, k ∈ Z
b) 2sin x = $$\sqrt{3}$$
sin x = $$\frac{\sqrt{3}}{2}$$
x = (-1)^k arcsin$$\frac{\sqrt{3}}{2}$$ + $$\pi$$k, k ∈ Z
x = (-1)^k $$\frac{\pi}{3}$$ + $$\pi$$k, k ∈ Z
c) 2sin2x - 3sin x - 2 = 0
Пусть sin x = t, тогда 2t2 - 3t - 2 = 0
D = 9 + 16 = 25
t1 = $$\frac{3 + 5}{4}$$ = 2
t2 = $$\frac{3 - 5}{4}$$ = -$$\frac{1}{2}$$
sin x = 2 (не имеет решений, т.к. |sin x| ≤ 1)
sin x = -$$\frac{1}{2}$$
x = (-1)k arcsin(-$$\frac{1}{2}$$) + $$\pi$$k, k ∈ Z
x = (-1)k+1$$\frac{\pi}{6}$$ + $$\pi$$k, k ∈ Z
3) Решите неравенства:
a) cos x > -$$\frac{1}{2}$$
-$$\frac{2\pi}{3}$$ + 2$$\pi$$k < x < $$\frac{2\pi}{3}$$ + 2$$\pi$$k, k ∈ Z
b) sin 2x < $$\frac{\sqrt{3}}{2}$$
-$$\frac{7\pi}{6}$$ + 2$$\pi$$k < 2x < $$\frac{\pi}{3}$$ + 2$$\pi$$k, k ∈ Z
-$$\frac{7\pi}{12}$$ + $$\pi$$k < x < $$\frac{\pi}{6}$$ + $$\pi$$k, k ∈ Z
4) Найти все корни уравнения, принадлежащие отрезку [0; 3π]
a) sin x = -$$\frac{\sqrt{3}}{2}$$
x = (-1)k+1 $$\frac{\pi}{3}$$ + $$\pi$$k, k ∈ Z
x1 = -$$\frac{\pi}{3}$$ (не принадлежит отрезку [0; 3π])
x2 = $$\pi$$ + $$\frac{\pi}{3}$$ = $$\frac{4\pi}{3}$$
x3 = 2$$\pi$$ - $$\frac{\pi}{3}$$ = $$\frac{5\pi}{3}$$
x4 = 3$$\pi$$ + $$\frac{\pi}{3}$$ = $$\frac{10\pi}{3}$$
Ответ: