Решим данные выражения, используя формулы сокращенного умножения:
- $$ (x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2 = x^2 + 10x + 25 $$
- $$ (a-2)^2 = a^2 - 2 \cdot a \cdot 2 + 2^2 = a^2 - 4a + 4 $$
- $$ (5a-2)^2 = (5a)^2 - 2 \cdot 5a \cdot 2 + 2^2 = 25a^2 - 20a + 4 $$
- $$ (4x+y)^2 = (4x)^2 + 2 \cdot 4x \cdot y + y^2 = 16x^2 + 8xy + y^2 $$
- $$ (a^2-5)^2 = (a^2)^2 - 2 \cdot a^2 \cdot 5 + 5^2 = a^4 - 10a^2 + 25 $$
- $$ (-6-n)^2 = (-1(6+n))^2 = (6+n)^2 = 6^2 + 2 \cdot 6 \cdot n + n^2 = 36 + 12n + n^2 $$
- $$ (7m-3n)^2 = (7m)^2 - 2 \cdot 7m \cdot 3n + (3n)^2 = 49m^2 - 42mn + 9n^2 $$
- $$ (-3x+2y)^2 = (-3x)^2 + 2 \cdot (-3x) \cdot 2y + (2y)^2 = 9x^2 - 12xy + 4y^2 $$
- $$ (14-d)^2 = 14^2 - 2 \cdot 14 \cdot d + d^2 = 196 - 28d + d^2 $$
- $$ (x^2-y)^2 = (x^2)^2 - 2 \cdot x^2 \cdot y + y^2 = x^4 - 2x^2y + y^2 $$
Ответ:
- $$ (x+5)^2 = x^2 + 10x + 25 $$
- $$ (a-2)^2 = a^2 - 4a + 4 $$
- $$ (5a-2)^2 = 25a^2 - 20a + 4 $$
- $$ (4x+y)^2 = 16x^2 + 8xy + y^2 $$
- $$ (a^2-5)^2 = a^4 - 10a^2 + 25 $$
- $$ (-6-n)^2 = 36 + 12n + n^2 $$
- $$ (7m-3n)^2 = 49m^2 - 42mn + 9n^2 $$
- $$ (-3x+2y)^2 = 9x^2 - 12xy + 4y^2 $$
- $$ (14-d)^2 = 196 - 28d + d^2 $$
- $$ (x^2-y)^2 = x^4 - 2x^2y + y^2 $$