Вопрос:

Вариант А1 1 Стороны параллелограмма равны. 12 см и 9 см, а его площадь равна 36 см³. Най- дите высоты параллело- грамма.

Смотреть решения всех заданий с листа

Ответ:

1. Дано: параллелограмм со сторонами 12 см и 9 см, площадью 36 см³.

Найти: высоты параллелограмма.

Решение:

Площадь параллелограмма вычисляется по формуле: $$S = a \cdot h_a$$, где $$S$$ - площадь, $$a$$ - сторона параллелограмма, $$h_a$$ - высота, проведенная к этой стороне.

1) Найдем высоту, проведенную к стороне 12 см:

$$h_{12} = \frac{S}{a} = \frac{36 \text{ см}^2}{12 \text{ см}} = 3 \text{ см}$$.

2) Найдем высоту, проведенную к стороне 9 см:

$$h_9 = \frac{S}{b} = \frac{36 \text{ см}^2}{9 \text{ см}} = 4 \text{ см}$$.

Ответ: 3 см и 4 см.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие