a) \[ -2,5 \cdot (-4) = 10 \]
б) \[ 2,88 : (-2,4) = -1,2 \]
в) \[ -1 \frac{1}{3} \cdot \frac{1}{2} = -\frac{4}{3} \cdot \frac{1}{2} = -\frac{4}{6} = -\frac{2}{3} \]
г) \[ \frac{3}{8} : (-0,75) = \frac{3}{8} : (-\frac{3}{4}) = \frac{3}{8} \cdot (-\frac{4}{3}) = -\frac{12}{24} = -\frac{1}{2} = -0,5 \]
a) \[ \frac{-12}{x} = \frac{-8,4}{-6,3} \]
\[ \frac{-12}{x} = \frac{8,4}{6,3} \]
\[ x = \frac{-12 \cdot 6,3}{8,4} = \frac{-12 \cdot 63}{84} = \frac{-12 \cdot 3}{4} = -9 \]
б) \[ -2x + 1 = -3,6 \]
\[ -2x = -3,6 - 1 \]
\[ -2x = -4,6 \]
\[ x = \frac{-4,6}{-2} = 2,3 \]
a) \[ (-2,5)^2 : (-1,25) - 5,3 = 6,25 : (-1,25) - 5,3 = -5 - 5,3 = -10,3 \]
б) \[ \left(-9,2 : 4\frac{3}{5} + 3\frac{1}{4}\right) \cdot (-0,8) = \left(-9,2 : \frac{23}{5} + \frac{13}{4}\right) \cdot (-0,8) = \left(-\frac{92}{10} \cdot \frac{5}{23} + \frac{13}{4}\right) \cdot (-0,8) = \left(-\frac{46}{1} \cdot \frac{1}{23} + \frac{13}{4}\right) \cdot (-0,8) = \left(-2 + \frac{13}{4}\right) \cdot (-0,8) = \left(-\frac{8}{4} + \frac{13}{4}\right) \cdot (-0,8) = \frac{5}{4} \cdot (-0,8) = \frac{5}{4} \cdot (-\frac{8}{10}) = \frac{5}{4} \cdot (-\frac{4}{5}) = -1 \]
Ответ: См. подробное решение выше