Давай разберем эти уравнения по порядку! Начнем с первого:
1. \[\cos{\frac{x}{3}} = \frac{\sqrt{3}}{2}\]
\(\frac{x}{3} = \pm \frac{\pi}{6} + 2\pi k, k \in \mathbb{Z}\)
\(x = \pm \frac{\pi}{2} + 6\pi k, k \in \mathbb{Z}\)
2. \[2\sin{2x} - 1 = 0\]
\[\sin{2x} = \frac{1}{2}\]
\[2x = (-1)^n \frac{\pi}{6} + \pi n, n \in \mathbb{Z}\]
\[x = (-1)^n \frac{\pi}{12} + \frac{\pi n}{2}, n \in \mathbb{Z}\]
3. \[\tan{\frac{x}{3}} - \sqrt{3} = 0\]
\[\tan{\frac{x}{3}} = \sqrt{3}\]
\[\frac{x}{3} = \frac{\pi}{3} + \pi k, k \in \mathbb{Z}\]
\[x = \pi + 3\pi k, k \in \mathbb{Z}\]
4. \[3\cot{\frac{x}{4}} + \sqrt{3} = 0\]
\[\cot{\frac{x}{4}} = -\frac{\sqrt{3}}{3}\]
\[\frac{x}{4} = -\frac{\pi}{3} + \pi k, k \in \mathbb{Z}\]
\[x = -\frac{4\pi}{3} + 4\pi k, k \in \mathbb{Z}\]
5. \[\sin{(\frac{\pi}{2} - \alpha)} = 0\]
\[\frac{\pi}{2} - \alpha = \pi k, k \in \mathbb{Z}\]
\[\alpha = \frac{\pi}{2} - \pi k, k \in \mathbb{Z}\]
6. \[\cos{(\frac{3\pi}{2} + \alpha)} = -1\]
\[\frac{3\pi}{2} + \alpha = \pi + 2\pi k, k \in \mathbb{Z}\]
\[\alpha = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\]
7. \[\tan{(\pi + \alpha)} + \sqrt{3} = 0\]
\[\tan{\alpha} = -\sqrt{3}\]
\[\alpha = -\frac{\pi}{3} + \pi k, k \in \mathbb{Z}\]
8. \[\cot{(2\pi - \alpha)} - \frac{\sqrt{3}}{3} = 0\]
\[\cot{(-\alpha)} = \frac{\sqrt{3}}{3}\]
\[-\alpha = \frac{\pi}{3} + \pi k, k \in \mathbb{Z}\]
\[\alpha = -\frac{\pi}{3} - \pi k, k \in \mathbb{Z}\]
9. \[\sin{(\pi + \alpha)} - 1 = 0\]
\[\sin{(\pi + \alpha)} = 1\]
\[\pi + \alpha = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\]
\[\alpha = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\]
10. \[\cos{\frac{x}{4}} = -\frac{\sqrt{2}}{2}\]
\[\frac{x}{4} = \pm \frac{3\pi}{4} + 2\pi k, k \in \mathbb{Z}\]
\[x = \pm 3\pi + 8\pi k, k \in \mathbb{Z}\]
11. \[
\tan{\frac{x}{3}} + 1 = 0\]
\[\tan{\frac{x}{3}} = -1\]
\[\frac{x}{3} = -\frac{\pi}{4} + \pi k, k \in \mathbb{Z}\]
\[x = -\frac{3\pi}{4} + 3\pi k, k \in \mathbb{Z}\]
12. \[
\cot{2x} + \sqrt{3} = 0\]
\[\cot{2x} = -\sqrt{3}\]
\[2x = \frac{5\pi}{6} + \pi k, k \in \mathbb{Z}\]
\[x = \frac{5\pi}{12} + \frac{\pi k}{2}, k \in \mathbb{Z}\]
13. \[
2\sin{5x} - \sqrt{3} = 0\]
\[\sin{5x} = \frac{\sqrt{3}}{2}\]
\[5x = (-1)^n \frac{\pi}{3} + \pi n, n \in \mathbb{Z}\]
\[x = (-1)^n \frac{\pi}{15} + \frac{\pi n}{5}, n \in \mathbb{Z}\]
14. \[
\sin{5x} = -1\]
\[5x = -\frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\]
\[x = -\frac{\pi}{10} + \frac{2\pi k}{5}, k \in \mathbb{Z}\]
15. \[
\tan{(\frac{\pi}{2} - 3x)} = \frac{\sqrt{2}}{2}\]
\[\cot{3x} = \frac{\sqrt{2}}{2}\]
\[3x = \arctan{\sqrt{2}} + \pi k, k \in \mathbb{Z}\]
\[x = \frac{1}{3} \arctan{\sqrt{2}} + \frac{\pi k}{3}, k \in \mathbb{Z}\]
Ответ: Решения уравнений выше.
Ты молодец! У тебя всё получится! Удачи в дальнейшем изучении математики!