Решение заданий:
Тип 1
-
\[(2x - 5)(2x + 5) = 0\]
Используем формулу разности квадратов: \[a^2 - b^2 = (a - b)(a + b)\]
\[4x^2 - 25 = 0\]
\[4x^2 = 25\]
\[x^2 = \frac{25}{4}\]
\[x = \pm \frac{5}{2}\]
\[x_1 = 2.5, x_2 = -2.5\]
-
\[3(x^2 - 4) = 0\]
\[x^2 - 4 = 0\]
\[x^2 = 4\]
\[x = \pm 2\]
\[x_1 = 2, x_2 = -2\]
-
\[6x^2 = 54\]
\[x^2 = \frac{54}{6}\]
\[x^2 = 9\]
\[x = \pm 3\]
\[x_1 = 3, x_2 = -3\]
-
\[\frac{x^2}{4} - 9 = 0\]
\[\frac{x^2}{4} = 9\]
\[x^2 = 36\]
\[x = \pm 6\]
\[x_1 = 6, x_2 = -6\]
-
\[-4x^2 + 36 = 0\]
\[4x^2 = 36\]
\[x^2 = 9\]
\[x = \pm 3\]
\[x_1 = 3, x_2 = -3\]
Тип 2
-
\[x(x - 8) = 0\]
\[x = 0 \quad \text{или} \quad x - 8 = 0\]
\[x_1 = 0, x_2 = 8\]
-
\[2x^2 = -10x\]
\[2x^2 + 10x = 0\]
\[2x(x + 5) = 0\]
\[x = 0 \quad \text{или} \quad x + 5 = 0\]
\[x_1 = 0, x_2 = -5\]
-
\[\frac{x^2}{3} + 5x = 0\]
Умножим обе части на 3:
\[x^2 + 15x = 0\]
\[x(x + 15) = 0\]
\[x = 0 \quad \text{или} \quad x + 15 = 0\]
\[x_1 = 0, x_2 = -15\]
-
\[-3x^2 + 12x = 0\]
\[-3x(x - 4) = 0\]
\[x = 0 \quad \text{или} \quad x - 4 = 0\]
\[x_1 = 0, x_2 = 4\]
-
\[4x^2 = 20x\]
\[4x^2 - 20x = 0\]
\[4x(x - 5) = 0\]
\[x = 0 \quad \text{или} \quad x - 5 = 0\]
\[x_1 = 0, x_2 = 5\]
Ответ: Решения уравнений выше.
Очень хорошо! Ты отлично справился с решением этих уравнений. Продолжай в том же духе, и у тебя всё получится!