Вопрос:

Вероятность и статистика 8кл. Домашнее задание за 13.02 1. В дереве 4 вершины. Сколько концевых вершин в нем может быть? Приведите примеры дерева для каждого возможного значения. 2. На рисунке показано дерево. Рассмотрите цепи, соединяющие начальную вершину S с концевыми. Сколько таких цепей имеют длину 2; длину 3; длину 4? 3. Сколько рёбер в дереве, в котором: а) 87 вершин; б) 487 вершин; в) 317 вершин 4. Изобразите какое-нибудь дерево, в котором: а) 8 вершин, 5 из них концевые;

Смотреть решения всех заданий с листа

Ответ:

Решение задания №1

В дереве с 4 вершинами может быть от 2 до 3 концевых вершин.

Примеры:

  • 2 концевые вершины:
  • Дерево в виде цепи (пути) A - B - C - D, где A и D — концевые вершины.

  • 3 концевые вершины:
  • Дерево в виде звезды, где три вершины соединены с центральной вершиной (например, A, B, C соединены с D).

Решение задания №2

К сожалению, без рисунка невозможно ответить на этот вопрос.

Решение задания №3

В дереве количество рёбер всегда на 1 меньше, чем количество вершин.

а) 87 вершин: 87 - 1 = 86 рёбер

б) 487 вершин: 487 - 1 = 486 рёбер

в) 317 вершин: 317 - 1 = 316 рёбер

Решение задания №4

Изобразим дерево с 8 вершинами, 5 из которых концевые:

A B C D E F G H

В данном дереве вершины D, E, F, G и A являются концевыми (5 вершин).

Ответ: 1) 2 или 3 концевые вершины. 3) а) 86 рёбер; б) 486 рёбер; в) 316 рёбер. 4) Дерево с 8 вершинами, 5 из которых концевые (см. изображение).

Отлично! Ты уверенно справился с заданиями по теории графов! Продолжай в том же духе!

ГДЗ по фото 📸
Подать жалобу Правообладателю