Вопрос:

10. Возведение в степень произведения и степени. A (ab) (xy)7 (2y)5 (1/3ab)3 (3 * 10)4 (-2x3y2)5 (b4)3 (xyz2)6 (2x3)4 (m5)n ((x2)4)7 (p3)5 : p10 (y2)7 * y3 (a4)5 : (a3)6 b13 : (b2)6 B (3x2y4)3 (-2x3y5)6 b19: (b3b2)3 (p2/4a)3 (a2 * b3/2p)2 (-1/3a4b5)3 (-2 1/3x5y3)2 (2 1/2n6m4)4 (7^9 * 7^2 / 7^10)^2 (-2x6y4)3 a18 : (a3)5 * a0 (b10 * b2)3 : b20 (a6)2 : (a2)4 * a5 ((p2)3)5 (x3)8 : (x4)6 C (am+1)2: (am-1)2 (cn+1)4: (cn-2)3 (b3m)2: (b2m-1)3 (-3 1/3a2b6)2 (-1 1/2n5m3)4 5^6 * 25^2 / 125^3 27^4 * 3^2 / 81^3 16^3 * 8^2 / 64^3 64^2 * 4^3 / 16^4 2^8 * (2^3)2 : 2^10 6^12 : (6^5)2 * 6^0 (c4n+1)3 : (c6n-2)2 (xn-3 * xn+2)2 (am+1)2: am-1 a5n+3: (an)4

Смотреть решения всех заданий с листа

Ответ:

Давай разберем это задание по алгебре. Здесь нужно упростить выражения, используя свойства степеней. Начнем с первого столбца (A), затем перейдем к (B) и (C).

Столбец A

  1. (ab)7 = a7b7

  2. (xy)7 = x7y7

  3. (2y)5 = 25y5 = 32y5

  4. \(\left(\frac{1}{3}ab\right)^3 = \frac{1}{3^3}a^3b^3 = \frac{1}{27}a^3b^3\)

  5. (3 \cdot 10)4 = 34 \cdot 104 = 81 \cdot 10000 = 810000

  6. (-2x3y2)5 = (-2)5x3*5y2*5 = -32x15y10

  7. (b4)3 = b4*3 = b12

  8. (xyz2)6 = x6y6z2*6 = x6y6z12

  9. (2x3)4 = 24x3*4 = 16x12

  10. (m5)n = m5n

  11. ((x2)4)7 = (x2*4)7 = x8*7 = x56

  12. (p3)5 : p10 = p3*5 : p10 = p15 : p10 = p15-10 = p5

  13. (y2)7 \cdot y3 = y2*7 \cdot y3 = y14 \cdot y3 = y14+3 = y17

  14. (a4)5 : (a3)6 = a4*5 : a3*6 = a20 : a18 = a20-18 = a2

  15. b13 : (b2)6 = b13 : b2*6 = b13 : b12 = b13-12 = b

Столбец B

  1. (3x2y4)3 = 33x2*3y4*3 = 27x6y12

  2. (-2x3y5)6 = (-2)6x3*6y5*6 = 64x18y30

  3. b19 : (b3b2)3 = b19 : (b3+2)3 = b19 : (b5)3 = b19 : b5*3 = b19 : b15 = b19-15 = b4

  4. \(\left(\frac{p^2}{4a}\right)^3 = \frac{(p^2)^3}{(4a)^3} = \frac{p^{2*3}}{4^3a^3} = \frac{p^6}{64a^3}\)

  5. \(\left(\frac{a^2 \cdot b^3}{2p}\right)^2 = \frac{(a^2 \cdot b^3)^2}{(2p)^2} = \frac{(a^2)^2 \cdot (b^3)^2}{2^2p^2} = \frac{a^{2*2} \cdot b^{3*2}}{4p^2} = \frac{a^4b^6}{4p^2}\)

  6. \(\left(-\frac{1}{3}a^4b^5\right)^3 = \left(-\frac{1}{3}\right)^3(a^4)^3(b^5)^3 = -\frac{1}{27}a^{12}b^{15}\)

  7. \(\left(-2\frac{1}{3}x^5y^3\right)^2 = \left(-\frac{7}{3}x^5y^3\right)^2 = \left(-\frac{7}{3}\right)^2(x^5)^2(y^3)^2 = \frac{49}{9}x^{10}y^6\)

  8. \(\left(2\frac{1}{2}n^6m^4\right)^4 = \left(\frac{5}{2}n^6m^4\right)^4 = \left(\frac{5}{2}\right)^4(n^6)^4(m^4)^4 = \frac{625}{16}n^{24}m^{16}\)

  9. \(\left(\frac{7^9 \cdot 7^2}{7^{10}}\right)^2 = \left(\frac{7^{9+2}}{7^{10}}\right)^2 = \left(\frac{7^{11}}{7^{10}}\right)^2 = (7^{11-10})^2 = (7)^2 = 49\)

  10. (-2x6y4)3 = (-2)3(x6)3(y4)3 = -8x18y12

  11. a18 : (a3)5 \cdot a0 = a18 : a15 \cdot 1 = a18-15 \cdot 1 = a3

  12. (b10 \cdot b2)3 : b20 = (b10+2)3 : b20 = (b12)3 : b20 = b36 : b20 = b36-20 = b16

  13. (a6)2 : (a2)4 \cdot a5 = a12 : a8 \cdot a5 = a12-8 \cdot a5 = a4 \cdot a5 = a4+5 = a9

  14. ((p2)3)5 = (p6)5 = p30

  15. (x3)8 : (x4)6 = x24 : x24 = 1

Столбец C

  1. (am+1)2 : (am-1)2 = a2(m+1) : a2(m-1) = a2m+2 : a2m-2 = a2m+2-(2m-2) = a2m+2-2m+2 = a4

  2. (cn+1)4 : (cn-2)3 = c4(n+1) : c3(n-2) = c4n+4 : c3n-6 = c4n+4-(3n-6) = c4n+4-3n+6 = cn+10

  3. (b3m)2 : (b2m-1)3 = b6m : b3(2m-1) = b6m : b6m-3 = b6m-(6m-3) = b6m-6m+3 = b3

  4. \(\left(-3\frac{1}{3}a^2b^6\right)^2 = \left(-\frac{10}{3}a^2b^6\right)^2 = \left(-\frac{10}{3}\right)^2(a^2)^2(b^6)^2 = \frac{100}{9}a^4b^{12}\)

  5. \(\left(-1\frac{1}{2}n^5m^3\right)^4 = \left(-\frac{3}{2}n^5m^3\right)^4 = \left(-\frac{3}{2}\right)^4(n^5)^4(m^3)^4 = \frac{81}{16}n^{20}m^{12}\)

  6. \(\frac{5^6 \cdot 25^2}{125^3} = \frac{5^6 \cdot (5^2)^2}{(5^3)^3} = \frac{5^6 \cdot 5^4}{5^9} = \frac{5^{6+4}}{5^9} = \frac{5^{10}}{5^9} = 5^{10-9} = 5\)

  7. \(\frac{27^4 \cdot 3^2}{81^3} = \frac{(3^3)^4 \cdot 3^2}{(3^4)^3} = \frac{3^{12} \cdot 3^2}{3^{12}} = \frac{3^{12+2}}{3^{12}} = \frac{3^{14}}{3^{12}} = 3^{14-12} = 3^2 = 9\)

  8. \(\frac{16^3 \cdot 8^2}{64^3} = \frac{(2^4)^3 \cdot (2^3)^2}{(2^6)^3} = \frac{2^{12} \cdot 2^6}{2^{18}} = \frac{2^{12+6}}{2^{18}} = \frac{2^{18}}{2^{18}} = 1\)

  9. \(\frac{64^2 \cdot 4^3}{16^4} = \frac{(4^3)^2 \cdot 4^3}{(4^2)^4} = \frac{4^6 \cdot 4^3}{4^8} = \frac{4^{6+3}}{4^8} = \frac{4^9}{4^8} = 4^{9-8} = 4\)

  10. \(2^8 \cdot (2^3)^2 : 2^{10} = 2^8 \cdot 2^6 : 2^{10} = 2^{8+6} : 2^{10} = 2^{14} : 2^{10} = 2^{14-10} = 2^4 = 16\)

  11. \(6^{12} : (6^5)^2 \cdot 6^0 = 6^{12} : 6^{10} \cdot 1 = 6^{12-10} = 6^2 = 36\)

  12. (c4n+1)3 : (c6n-2)2 = c3(4n+1) : c2(6n-2) = c12n+3 : c12n-4 = c12n+3-(12n-4) = c12n+3-12n+4 = c7

  13. (xn-3 \cdot xn+2)2 = (xn-3+n+2)2 = (x2n-1)2 = x2(2n-1) = x4n-2

  14. (am+1)2 : am-1 = a2(m+1) : am-1 = a2m+2 : am-1 = a2m+2-(m-1) = a2m+2-m+1 = am+3

  15. a5n+3 : (an)4 = a5n+3 : a4n = a5n+3-4n = an+3

Ответ: Выше приведены упрощенные выражения для каждого элемента.

ГДЗ по фото 📸
Подать жалобу Правообладателю