Давай разберем это задание по алгебре. Здесь нужно упростить выражения, используя свойства степеней. Начнем с первого столбца (A), затем перейдем к (B) и (C).
(ab)7 = a7b7
(xy)7 = x7y7
(2y)5 = 25y5 = 32y5
\(\left(\frac{1}{3}ab\right)^3 = \frac{1}{3^3}a^3b^3 = \frac{1}{27}a^3b^3\)
(3 \cdot 10)4 = 34 \cdot 104 = 81 \cdot 10000 = 810000
(-2x3y2)5 = (-2)5x3*5y2*5 = -32x15y10
(b4)3 = b4*3 = b12
(xyz2)6 = x6y6z2*6 = x6y6z12
(2x3)4 = 24x3*4 = 16x12
(m5)n = m5n
((x2)4)7 = (x2*4)7 = x8*7 = x56
(p3)5 : p10 = p3*5 : p10 = p15 : p10 = p15-10 = p5
(y2)7 \cdot y3 = y2*7 \cdot y3 = y14 \cdot y3 = y14+3 = y17
(a4)5 : (a3)6 = a4*5 : a3*6 = a20 : a18 = a20-18 = a2
b13 : (b2)6 = b13 : b2*6 = b13 : b12 = b13-12 = b
(3x2y4)3 = 33x2*3y4*3 = 27x6y12
(-2x3y5)6 = (-2)6x3*6y5*6 = 64x18y30
b19 : (b3b2)3 = b19 : (b3+2)3 = b19 : (b5)3 = b19 : b5*3 = b19 : b15 = b19-15 = b4
\(\left(\frac{p^2}{4a}\right)^3 = \frac{(p^2)^3}{(4a)^3} = \frac{p^{2*3}}{4^3a^3} = \frac{p^6}{64a^3}\)
\(\left(\frac{a^2 \cdot b^3}{2p}\right)^2 = \frac{(a^2 \cdot b^3)^2}{(2p)^2} = \frac{(a^2)^2 \cdot (b^3)^2}{2^2p^2} = \frac{a^{2*2} \cdot b^{3*2}}{4p^2} = \frac{a^4b^6}{4p^2}\)
\(\left(-\frac{1}{3}a^4b^5\right)^3 = \left(-\frac{1}{3}\right)^3(a^4)^3(b^5)^3 = -\frac{1}{27}a^{12}b^{15}\)
\(\left(-2\frac{1}{3}x^5y^3\right)^2 = \left(-\frac{7}{3}x^5y^3\right)^2 = \left(-\frac{7}{3}\right)^2(x^5)^2(y^3)^2 = \frac{49}{9}x^{10}y^6\)
\(\left(2\frac{1}{2}n^6m^4\right)^4 = \left(\frac{5}{2}n^6m^4\right)^4 = \left(\frac{5}{2}\right)^4(n^6)^4(m^4)^4 = \frac{625}{16}n^{24}m^{16}\)
\(\left(\frac{7^9 \cdot 7^2}{7^{10}}\right)^2 = \left(\frac{7^{9+2}}{7^{10}}\right)^2 = \left(\frac{7^{11}}{7^{10}}\right)^2 = (7^{11-10})^2 = (7)^2 = 49\)
(-2x6y4)3 = (-2)3(x6)3(y4)3 = -8x18y12
a18 : (a3)5 \cdot a0 = a18 : a15 \cdot 1 = a18-15 \cdot 1 = a3
(b10 \cdot b2)3 : b20 = (b10+2)3 : b20 = (b12)3 : b20 = b36 : b20 = b36-20 = b16
(a6)2 : (a2)4 \cdot a5 = a12 : a8 \cdot a5 = a12-8 \cdot a5 = a4 \cdot a5 = a4+5 = a9
((p2)3)5 = (p6)5 = p30
(x3)8 : (x4)6 = x24 : x24 = 1
(am+1)2 : (am-1)2 = a2(m+1) : a2(m-1) = a2m+2 : a2m-2 = a2m+2-(2m-2) = a2m+2-2m+2 = a4
(cn+1)4 : (cn-2)3 = c4(n+1) : c3(n-2) = c4n+4 : c3n-6 = c4n+4-(3n-6) = c4n+4-3n+6 = cn+10
(b3m)2 : (b2m-1)3 = b6m : b3(2m-1) = b6m : b6m-3 = b6m-(6m-3) = b6m-6m+3 = b3
\(\left(-3\frac{1}{3}a^2b^6\right)^2 = \left(-\frac{10}{3}a^2b^6\right)^2 = \left(-\frac{10}{3}\right)^2(a^2)^2(b^6)^2 = \frac{100}{9}a^4b^{12}\)
\(\left(-1\frac{1}{2}n^5m^3\right)^4 = \left(-\frac{3}{2}n^5m^3\right)^4 = \left(-\frac{3}{2}\right)^4(n^5)^4(m^3)^4 = \frac{81}{16}n^{20}m^{12}\)
\(\frac{5^6 \cdot 25^2}{125^3} = \frac{5^6 \cdot (5^2)^2}{(5^3)^3} = \frac{5^6 \cdot 5^4}{5^9} = \frac{5^{6+4}}{5^9} = \frac{5^{10}}{5^9} = 5^{10-9} = 5\)
\(\frac{27^4 \cdot 3^2}{81^3} = \frac{(3^3)^4 \cdot 3^2}{(3^4)^3} = \frac{3^{12} \cdot 3^2}{3^{12}} = \frac{3^{12+2}}{3^{12}} = \frac{3^{14}}{3^{12}} = 3^{14-12} = 3^2 = 9\)
\(\frac{16^3 \cdot 8^2}{64^3} = \frac{(2^4)^3 \cdot (2^3)^2}{(2^6)^3} = \frac{2^{12} \cdot 2^6}{2^{18}} = \frac{2^{12+6}}{2^{18}} = \frac{2^{18}}{2^{18}} = 1\)
\(\frac{64^2 \cdot 4^3}{16^4} = \frac{(4^3)^2 \cdot 4^3}{(4^2)^4} = \frac{4^6 \cdot 4^3}{4^8} = \frac{4^{6+3}}{4^8} = \frac{4^9}{4^8} = 4^{9-8} = 4\)
\(2^8 \cdot (2^3)^2 : 2^{10} = 2^8 \cdot 2^6 : 2^{10} = 2^{8+6} : 2^{10} = 2^{14} : 2^{10} = 2^{14-10} = 2^4 = 16\)
\(6^{12} : (6^5)^2 \cdot 6^0 = 6^{12} : 6^{10} \cdot 1 = 6^{12-10} = 6^2 = 36\)
(c4n+1)3 : (c6n-2)2 = c3(4n+1) : c2(6n-2) = c12n+3 : c12n-4 = c12n+3-(12n-4) = c12n+3-12n+4 = c7
(xn-3 \cdot xn+2)2 = (xn-3+n+2)2 = (x2n-1)2 = x2(2n-1) = x4n-2
(am+1)2 : am-1 = a2(m+1) : am-1 = a2m+2 : am-1 = a2m+2-(m-1) = a2m+2-m+1 = am+3
a5n+3 : (an)4 = a5n+3 : a4n = a5n+3-4n = an+3
Ответ: Выше приведены упрощенные выражения для каждого элемента.