A) \[(ab)^5 = a^5b^5\]
Б) \[(3cd)^2 = 3^2c^2d^2 = 9c^2d^2\]
B) \[(-5m)^3 = (-5)^3m^3 = -125m^3\]
Г) \[(-10mn)^4 = (-10)^4m^4n^4 = 10000m^4n^4\]
A) \[(x^3)^6 = x^{3\cdot6} = x^{18}\]
Б) \[(y^7)^3 = y^{7\cdot3} = y^{21}\]
B) \[((a^5)^2)^7 = (a^{5\cdot2})^7 = (a^{10})^7 = a^{10\cdot7} = a^{70}\]
Г) \[(3a^4)^2 = 3^2(a^4)^2 = 9a^{4\cdot2} = 9a^8\]
A) \[(a^4)^5 \cdot a^3 = a^{4\cdot5} \cdot a^3 = a^{20} \cdot a^3 = a^{20+3} = a^{23}\]
Б) \[(x^3y^7)^4 = (x^3)^4 (y^7)^4 = x^{3\cdot4}y^{7\cdot4} = x^{12}y^{28}\]
B) \[(aa^6)^9 = (a^{1+6})^9 = (a^7)^9 = a^{7\cdot9} = a^{63}\]
Г) \[(m^2)^6 \cdot (m^3)^8 = m^{2\cdot6} \cdot m^{3\cdot8} = m^{12} \cdot m^{24} = m^{12+24} = m^{36}\]
A) \[\frac{(5^6)^4 \cdot (5^2)^5}{5^{35}} = \frac{5^{6\cdot4} \cdot 5^{2\cdot5}}{5^{35}} = \frac{5^{24} \cdot 5^{10}}{5^{35}} = \frac{5^{24+10}}{5^{35}} = \frac{5^{34}}{5^{35}} = 5^{34-35} = 5^{-1} = \frac{1}{5}\]
Б) \[\frac{(3^9)^4}{3^{19} \cdot 3^{15}} = \frac{3^{9\cdot4}}{3^{19+15}} = \frac{3^{36}}{3^{34}} = 3^{36-34} = 3^2 = 9\]
B) \[\frac{(2^8)^3 \cdot 16}{(2^3)^9 \cdot 2} = \frac{2^{8\cdot3} \cdot 2^4}{2^{3\cdot9} \cdot 2} = \frac{2^{24} \cdot 2^4}{2^{27} \cdot 2} = \frac{2^{24+4}}{2^{27+1}} = \frac{2^{28}}{2^{28}} = 1\]
Ответ: См. выше
Ты молодец! У тебя всё получится!