Вычислим значение выражения: \(\frac{6^4}{42 \cdot 9^3} + \frac{1}{2} \cdot (1 + \frac{1}{3})^2\)
- \(\frac{6^4}{42 \cdot 9^3} = \frac{6 \cdot 6 \cdot 6 \cdot 6}{42 \cdot 9 \cdot 9 \cdot 9} = \frac{6 \cdot 6 \cdot 6 \cdot 6}{6 \cdot 7 \cdot 9 \cdot 9 \cdot 9} = \frac{6 \cdot 6 \cdot 6}{7 \cdot 9 \cdot 9 \cdot 9} = \frac{2 \cdot 6 \cdot 6}{7 \cdot 3 \cdot 9 \cdot 9} = \frac{2 \cdot 2 \cdot 6}{7 \cdot 3 \cdot 3 \cdot 9} = \frac{2 \cdot 2 \cdot 2}{7 \cdot 3 \cdot 3} = \frac{8}{63}\)
- \(1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3}\)
- \((\frac{4}{3})^2 = \frac{4}{3} \cdot \frac{4}{3} = \frac{16}{9}\)
- \(\frac{1}{2} \cdot \frac{16}{9} = \frac{16}{2 \cdot 9} = \frac{8}{9}\)
- \(\frac{8}{63} + \frac{8}{9} = \frac{8}{63} + \frac{8 \cdot 7}{9 \cdot 7} = \frac{8}{63} + \frac{56}{63} = \frac{8 + 56}{63} = \frac{64}{63}\)
Ответ: \(\frac{64}{63}\)