a) $$\frac{6^7 \cdot 6^{11}}{6^{15}} = \frac{6^{7+11}}{6^{15}} = \frac{6^{18}}{6^{15}} = 6^{18-15} = 6^3 = 6 \cdot 6 \cdot 6 = 36 \cdot 6 = 216$$
б) $$\frac{8^4 \cdot 8^{13}}{8^{18}} = \frac{8^{4+13}}{8^{18}} = \frac{8^{17}}{8^{18}} = 8^{17-18} = 8^{-1} = \frac{1}{8}$$
в) $$\frac{3^5 \cdot 3^9}{3^{12} \cdot 9} = \frac{3^{5+9}}{3^{12} \cdot 3^2} = \frac{3^{14}}{3^{12+2}} = \frac{3^{14}}{3^{14}} = 1$$
г) $$\left(4 \frac{3}{7}\right)^0 = 1$$, т.к. любое число в степени 0 равно 1.
Ответ:
a) 216
б) $$\frac{1}{8}$$
в) 1
г) 1