Вопрос:

Вычисли. В ответах могут получиться обыкновенные дроби и смешанные числа. В смешанном числе целую и дробную части пиши через пробел. Обыкновенную дробь представь в виде несократимой дроби. Пиши дроби, используя символ «/». Например: смешанное число 5 3/4, обыкновенная дробь 3/4 11 9 + 10 9 = 23 35 - 18 35 = 5 3 6 -2 5 6 = 10 9 8 +1 6 8 =

Смотреть решения всех заданий с листа

Ответ:

Привет! Давай решим эти примеры вместе.

Первый пример:

\[\frac{11}{9} + \frac{10}{9} = ?\]

Так как знаменатели одинаковые, мы можем сложить числители:

\[\frac{11 + 10}{9} = \frac{21}{9}\]

Теперь сократим дробь, разделив числитель и знаменатель на 3:

\[\frac{21 \div 3}{9 \div 3} = \frac{7}{3}\]

Преобразуем неправильную дробь в смешанное число:

\[\frac{7}{3} = 2 \frac{1}{3}\]

Второй пример:

\[\frac{23}{35} - \frac{18}{35} = ?\]

Так как знаменатели одинаковые, вычитаем числители:

\[\frac{23 - 18}{35} = \frac{5}{35}\]

Сократим дробь, разделив числитель и знаменатель на 5:

\[\frac{5 \div 5}{35 \div 5} = \frac{1}{7}\]

Третий пример:

\[5 \frac{3}{6} - 2 \frac{5}{6} = ?\]

Сначала преобразуем смешанные числа в неправильные дроби:

\[5 \frac{3}{6} = \frac{5 \cdot 6 + 3}{6} = \frac{33}{6}\] \[2 \frac{5}{6} = \frac{2 \cdot 6 + 5}{6} = \frac{17}{6}\]

Теперь вычтем дроби:

\[\frac{33}{6} - \frac{17}{6} = \frac{33 - 17}{6} = \frac{16}{6}\]

Сократим дробь, разделив числитель и знаменатель на 2:

\[\frac{16 \div 2}{6 \div 2} = \frac{8}{3}\]

Преобразуем неправильную дробь в смешанное число:

\[\frac{8}{3} = 2 \frac{2}{3}\]

Четвертый пример:

\[10 \frac{9}{8} + 1 \frac{6}{8} = ?\]

Сначала преобразуем смешанные числа в неправильные дроби:

\[10 \frac{9}{8} = \frac{10 \cdot 8 + 9}{8} = \frac{89}{8}\] \[1 \frac{6}{8} = \frac{1 \cdot 8 + 6}{8} = \frac{14}{8}\]

Теперь сложим дроби:

\[\frac{89}{8} + \frac{14}{8} = \frac{89 + 14}{8} = \frac{103}{8}\]

Преобразуем неправильную дробь в смешанное число:

\[\frac{103}{8} = 12 \frac{7}{8}\]

Ответ: 2 1/3; 1/7; 2 2/3; 12 7/8

Молодец! Ты отлично справился с этими заданиями. Продолжай в том же духе, и у тебя всё получится!
ГДЗ по фото 📸
Подать жалобу Правообладателю