Выполните умножение:
a) \[\frac{7}{8} \cdot 5\frac{1}{3} = \frac{7}{8} \cdot \frac{16}{3} = \frac{7 \cdot 16}{8 \cdot 3} = \frac{7 \cdot 2}{1 \cdot 3} = \frac{14}{3} = 4\frac{2}{3}\]
б) \[7\frac{5}{7} \cdot 1\frac{1}{6} = \frac{54}{7} \cdot \frac{7}{6} = \frac{54 \cdot 7}{7 \cdot 6} = \frac{54}{6} = 9\]
в) \[1\frac{4}{5} \cdot 6\frac{2}{3} = \frac{9}{5} \cdot \frac{20}{3} = \frac{9 \cdot 20}{5 \cdot 3} = \frac{3 \cdot 4}{1 \cdot 1} = 12\]
г) \[4\frac{1}{2} \cdot 2\frac{4}{5} = \frac{9}{2} \cdot \frac{14}{5} = \frac{9 \cdot 14}{2 \cdot 5} = \frac{9 \cdot 7}{1 \cdot 5} = \frac{63}{5} = 12\frac{3}{5}\]
д) \[3\frac{3}{11} \cdot 7\frac{1}{3} = \frac{36}{11} \cdot \frac{22}{3} = \frac{36 \cdot 22}{11 \cdot 3} = \frac{12 \cdot 2}{1 \cdot 1} = 24\]
е) \[10\frac{2}{7} \cdot 1\frac{2}{9} = \frac{72}{7} \cdot \frac{11}{9} = \frac{72 \cdot 11}{7 \cdot 9} = \frac{8 \cdot 11}{7 \cdot 1} = \frac{88}{7} = 12\frac{4}{7}\]
ж) \[2\frac{1}{2} \cdot \frac{18}{25} = \frac{5}{2} \cdot \frac{18}{25} = \frac{5 \cdot 18}{2 \cdot 25} = \frac{1 \cdot 9}{1 \cdot 5} = \frac{9}{5} = 1\frac{4}{5}\]
з) \[5\frac{1}{7} \cdot 3\frac{8}{9} = \frac{36}{7} \cdot \frac{35}{9} = \frac{36 \cdot 35}{7 \cdot 9} = \frac{4 \cdot 5}{1 \cdot 1} = 20\]
Выполните умножение:
1) \[\frac{2}{13} \cdot 5 = \frac{2 \cdot 5}{13} = \frac{10}{13}\]
2) \[\frac{4}{17} \cdot 3 = \frac{4 \cdot 3}{17} = \frac{12}{17}\]
3) \[\frac{8}{9} \cdot 2 = \frac{8 \cdot 2}{9} = \frac{16}{9} = 1\frac{7}{9}\]
4) \[\frac{4}{49} \cdot 7 = \frac{4 \cdot 7}{49} = \frac{4 \cdot 1}{7} = \frac{4}{7}\]
Найдите произведение:
1) \[\frac{2}{7} \cdot \frac{3}{5} = \frac{2 \cdot 3}{7 \cdot 5} = \frac{6}{35}\]
2) \[\frac{3}{4} \cdot \frac{5}{6} = \frac{3 \cdot 5}{4 \cdot 6} = \frac{1 \cdot 5}{4 \cdot 2} = \frac{5}{8}\]
3) \[\frac{4}{7} \cdot \frac{7}{9} = \frac{4 \cdot 7}{7 \cdot 9} = \frac{4 \cdot 1}{1 \cdot 9} = \frac{4}{9}\]
4) \[\frac{15}{16} \cdot \frac{48}{55} = \frac{15 \cdot 48}{16 \cdot 55} = \frac{3 \cdot 3}{1 \cdot 11} = \frac{9}{11}\]
Ответ: Решения выше