а) −3,5 + 8,1 = 4,6
б) −2,9 − 3,6 = −6,5
в) −7,5 + 2,8 = −4,7
г) 4,5 − 8,3 = −3,8
д) −\(\frac{5}{6}\) + \(\frac{3}{8}\) = \(\frac{-5 \cdot 4 + 3 \cdot 3}{24}\) = \(\frac{-20 + 9}{24}\) = \(\frac{-11}{24}\) = -\(\frac{11}{24}\)
e) −2 \(\frac{5}{7}\) − 1 \(\frac{3}{14}\) = −\(\frac{19}{7}\) − \(\frac{17}{14}\) = \(\frac{-19 \cdot 2 - 17}{14}\) = \(\frac{-38 - 17}{14}\) = \(\frac{-55}{14}\) = -3 \(\frac{13}{14}\)
\(\left(\frac{6}{35} - \frac{4}{7}\right) - (-1,8 - 4,3) - 5,7\) = \(\left(\frac{6 - 4 \cdot 5}{35}\right) - (-6,1) - 5,7\) = \(\frac{6 - 20}{35}\) + 6,1 - 5,7 = -\(\frac{14}{35}\) + 0,4 = -\(\frac{2}{5}\) + 0,4 = -0,4 + 0,4 = 0
а) 5,23 + x = −7,24
x = -7,24 - 5,23
x = -12,47
б) \(y - 2\frac{5}{12} = -3\frac{7}{15}\)
\(y = -3\frac{7}{15} + 2\frac{5}{12}\)
\(y = -\frac{52}{15} + \frac{29}{12}\)
\(y = \frac{-52 \cdot 4 + 29 \cdot 5}{60}\)
\(y = \frac{-208 + 145}{60}\)
\(y = -\frac{63}{60}\)
\(y = -\frac{21}{20}\)
\(y = -1\frac{1}{20}\)
\(|CD| = |-0,8 - (-4,7)| = |-0,8 + 4,7| = |3,9| = 3,9\)
Если 2 < |y| < 7, то |y| может принимать значения 3, 4, 5, 6.
Следовательно, y может быть равен −6, −5, −4, −3, 3, 4, 5, 6.