150. Выполните действия:
a) $$\left(\frac{x}{y^{2}}-\frac{1}{x}\right):\left(\frac{1}{y}+\frac{1}{x}\right);$$
- $$\frac{x}{y^{2}}-\frac{1}{x}=\frac{x^2-y^2}{xy^2}$$
- $$\frac{1}{y}+\frac{1}{x}=\frac{x+y}{xy}$$
- $$\frac{x^2-y^2}{xy^2}:\frac{x+y}{xy}=\frac{(x-y)(x+y)xy}{xy^2(x+y)}=\frac{x-y}{y}$$
Ответ: $$\frac{x-y}{y}$$
б) $$\left(\frac{a}{m^{2}}+\frac{a^{2}}{m^{3}}\right):\left(\frac{m^{2}}{a^{2}}+\frac{m}{a}\right);$$
- $$\frac{a}{m^{2}}+\frac{a^{2}}{m^{3}}=\frac{a m+a^2}{m^3}$$
- $$\frac{m^{2}}{a^{2}}+\frac{m}{a}=\frac{m^2+ma}{a^2}$$
- $$\frac{a m+a^2}{m^3}:\frac{m^2+ma}{a^2}=\frac{a(m+a)a^2}{m^3m(m+a)}=\frac{a^3}{m^4}$$
Ответ: $$\frac{a^3}{m^4}$$
в) $$\frac{a b+b^{2}}{3}: \frac{b^{3}}{3 a}+\frac{a+b}{b};$$
- $$\frac{a b+b^{2}}{3}: \frac{b^{3}}{3 a}=\frac{b(a+b)3a}{3b^3}=\frac{a(a+b)}{b^2}$$
- $$\frac{a(a+b)}{b^2}+\frac{a+b}{b}=\frac{a(a+b)+b(a+b)}{b^2}=\frac{(a+b)(a+b)}{b^2}=\frac{(a+b)^2}{b^2}$$
Ответ: $$\frac{(a+b)^2}{b^2}$$
г) $$\frac{x-y}{x}-\frac{5 y}{x^{2}} \cdot \frac{x^{2}-x y}{5 y}$$.
- $$\frac{5 y}{x^{2}} \cdot \frac{x^{2}-x y}{5 y}=\frac{5yx(x-y)}{5yx^2}=\frac{x-y}{x}$$
- $$\frac{x-y}{x}-\frac{x-y}{x}=0$$
Ответ: $$0$$
151. Выполните действия:
a) $$\left(\frac{x}{x+1}+1\right) \cdot \frac{1+x}{2 x-1}$$;
- $$\frac{x}{x+1}+1=\frac{x+x+1}{x+1}=\frac{2x+1}{x+1}$$
- $$\frac{2x+1}{x+1} \cdot \frac{1+x}{2 x-1}=\frac{(2x+1)(x+1)}{(x+1)(2x-1)}=\frac{2x+1}{2x-1}$$
Ответ: $$\frac{2x+1}{2x-1}$$
б)
$$\left(\frac{5 y^{2}}{1-y^{2}}\right):\left(1-\frac{1}{1-y}\right);$$
- $$1-\frac{1}{1-y}=\frac{1-y-1}{1-y}=\frac{-y}{1-y}$$
- $$\frac{5 y^{2}}{1-y^{2}}: \frac{-y}{1-y}=\frac{5y^2(1-y)}{(1-y)(1+y)(-y)}=\frac{-5y}{1+y}$$
Ответ: $$\frac{-5y}{1+y}$$
в) $$\left(\frac{4 a}{2-a}-a\right): \frac{a+2}{a-2}$$;
- $$\frac{4 a}{2-a}-a=\frac{4a-a(2-a)}{2-a}=\frac{4a-2a+a^2}{2-a}=\frac{a^2+2a}{2-a}$$
- $$\frac{a^2+2a}{2-a}: \frac{a+2}{a-2}=\frac{a(a+2)(a-2)}{(2-a)(a+2)}=-a$$
Ответ: $$-a$$
г) $$\frac{x-2}{x-3} \cdot \left(x+\frac{x}{2-x}\right)$$.
- $$x+\frac{x}{2-x}=\frac{x(2-x)+x}{2-x}=\frac{2x-x^2+x}{2-x}=\frac{3x-x^2}{2-x}$$
- $$\frac{x-2}{x-3} \cdot \frac{3x-x^2}{2-x}=\frac{(x-2)x(3-x)}{(x-3)(2-x)}= -x$$
Ответ: $$-x$$
152. Упростите выражение:
a)
$$\left(\frac{2 m+1}{2 m-1}-\frac{2 m-1}{2 m+1}\right): \frac{4}{10 m-5}$$
- $$\frac{2 m+1}{2 m-1}-\frac{2 m-1}{2 m+1}=\frac{(2m+1)^2-(2m-1)^2}{(2m-1)(2m+1)}=\frac{4m^2+4m+1-(4m^2-4m+1)}{4m^2-1}=\frac{8m}{4m^2-1}$$
- $$\frac{8m}{4m^2-1}: \frac{4}{10 m-5}=\frac{8m(10m-5)}{4(4m^2-1)}=\frac{8m \cdot 5(2m-1)}{4(2m-1)(2m+1)}=\frac{10m}{2m+1}$$
Ответ: $$\frac{10m}{2m+1}$$
б)
$$\frac{x+3}{x^{2}+9} \cdot \left(\frac{x+3}{x-3}+\frac{x-3}{x+3}\right)$$.
- $$\frac{x+3}{x-3}+\frac{x-3}{x+3}=\frac{(x+3)^2+(x-3)^2}{(x-3)(x+3)}=\frac{x^2+6x+9+x^2-6x+9}{x^2-9}=\frac{2x^2+18}{x^2-9}=\frac{2(x^2+9)}{x^2-9}$$
- $$\frac{x+3}{x^{2}+9} \cdot \frac{2(x^2+9)}{x^2-9}=\frac{2(x+3)}{x^2-9}=\frac{2(x+3)}{(x-3)(x+3)}=\frac{2}{x-3}$$
Ответ: $$\frac{2}{x-3}$$