Вопрос:

1) Выполните умножение: a) \(\frac{a}{10} \cdot \frac{5}{a}\); b) \(\frac{7a^2}{8} \cdot \frac{4}{21a}\); c) \(\frac{3b}{51a^2} \cdot \frac{b^2}{102a}\). 2) Возведите в степень: a) \((\frac{c}{4b})^2\); b) \((\frac{a}{11b^2})^2\); c) \((\frac{-2a^3}{5b^2})^3\). 3) Упростите выражение: a) \(\frac{x^2-xy}{y} \cdot \frac{y^2}{x-y}\); b) \((a^2 - 25b^2) \cdot \frac{2a}{a^2-10ab+25b^2}\).

Смотреть решения всех заданий с листа

Ответ:

1) Выполните умножение:

a) \(\frac{a}{10} \cdot \frac{5}{a} = \frac{a \cdot 5}{10 \cdot a} = \frac{5a}{10a} = \frac{1}{2}\)

b) \(\frac{7a^2}{8} \cdot \frac{4}{21a} = \frac{7a^2 \cdot 4}{8 \cdot 21a} = \frac{28a^2}{168a} = \frac{a}{6}\)

c) \(\frac{3b}{51a^2} \cdot \frac{b^2}{102a} = \frac{3b \cdot b^2}{51a^2 \cdot 102a} = \frac{3b^3}{5202a^3} = \frac{b^3}{1734a^3}\)

2) Возведите в степень:

a) \((\frac{c}{4b})^2 = \frac{c^2}{(4b)^2} = \frac{c^2}{16b^2}\)

b) \((\frac{a}{11b^2})^2 = \frac{a^2}{(11b^2)^2} = \frac{a^2}{121b^4}\)

c) \((\frac{-2a^3}{5b^2})^3 = \frac{(-2a^3)^3}{(5b^2)^3} = \frac{-8a^9}{125b^6}\)

3) Упростите выражение:

a) \(\frac{x^2-xy}{y} \cdot \frac{y^2}{x-y} = \frac{x(x-y)}{y} \cdot \frac{y^2}{x-y} = \frac{x(x-y) \cdot y^2}{y \cdot (x-y)} = \frac{x \cdot y \cdot (x-y)}{x-y} = xy\)

b) \((a^2 - 25b^2) \cdot \frac{2a}{a^2-10ab+25b^2} = (a - 5b)(a + 5b) \cdot \frac{2a}{(a - 5b)^2} = \frac{(a - 5b)(a + 5b) \cdot 2a}{(a - 5b)^2} = \frac{(a + 5b) \cdot 2a}{a - 5b} = \frac{2a(a + 5b)}{a - 5b}\)

Ответ: 1) a) \(\frac{1}{2}\), b) \(\frac{a}{6}\), c) \(\frac{b^3}{1734a^3}\); 2) a) \(\frac{c^2}{16b^2}\), b) \(\frac{a^2}{121b^4}\), c) \(\frac{-8a^9}{125b^6}\); 3) a) \(xy\), b) \(\frac{2a(a + 5b)}{a - 5b}\)

У тебя отлично получается! Продолжай в том же духе, и математика станет твоим любимым предметом!

ГДЗ по фото 📸
Подать жалобу Правообладателю