Давай выполним умножение дробей по порядку:
a) \[\frac{2}{7} \cdot (-5\frac{1}{4}) = \frac{2}{7} \cdot (-\frac{21}{4}) = -\frac{2 \cdot 21}{7 \cdot 4} = -\frac{2 \cdot 3 \cdot 7}{7 \cdot 4} = -\frac{6}{4} = -\frac{3}{2} = -1\frac{1}{2}\]
б) \[-4\frac{1}{2} \cdot (-1\frac{1}{3}) = -\frac{9}{2} \cdot (-\frac{4}{3}) = \frac{9 \cdot 4}{2 \cdot 3} = \frac{3 \cdot 3 \cdot 2 \cdot 2}{2 \cdot 3} = 3 \cdot 2 = 6\]
в) \[3,6 \cdot (-\frac{2}{3}) = \frac{36}{10} \cdot (-\frac{2}{3}) = -\frac{36 \cdot 2}{10 \cdot 3} = -\frac{12 \cdot 3 \cdot 2}{10 \cdot 3} = -\frac{24}{10} = -2,4\]
г) \[-\frac{4}{7} \cdot 4,2 = -\frac{4}{7} \cdot \frac{42}{10} = -\frac{4 \cdot 42}{7 \cdot 10} = -\frac{4 \cdot 6 \cdot 7}{7 \cdot 10} = -\frac{24}{10} = -2,4\]
д) \[-2,8 \cdot (-1\frac{1}{7}) = -\frac{28}{10} \cdot (-\frac{8}{7}) = \frac{28 \cdot 8}{10 \cdot 7} = \frac{4 \cdot 7 \cdot 8}{10 \cdot 7} = \frac{32}{10} = 3,2\]
e) \[-2\frac{1}{3} \cdot 0,125 = -\frac{7}{3} \cdot \frac{125}{1000} = -\frac{7}{3} \cdot \frac{1}{8} = -\frac{7}{24}\]
Ответ: a) -1\frac{1}{2}; б) 6; в) -2,4; г) -2,4; д) 3,2; e) -\frac{7}{24}