Для того, чтобы выразить все буквенные величины, необходимо решить уравнение относительно каждой из них. Дано уравнение:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
Выразим x:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
$$9x^2-8 = \frac{(bns-8)(p-q)}{422}$$
$$9x^2 = \frac{(bns-8)(p-q)}{422} + 8$$
$$x^2 = \frac{(bns-8)(p-q)}{422 \cdot 9} + \frac{8}{9}$$
$$x = \pm \sqrt{\frac{(bns-8)(p-q)}{3798} + \frac{8}{9}}$$
Выразим p:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
$$p-q = \frac{422(9x^2-8)}{bns-8}$$
$$p = \frac{422(9x^2-8)}{bns-8} + q$$
Выразим q:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
$$p-q = \frac{422(9x^2-8)}{bns-8}$$
$$q = p - \frac{422(9x^2-8)}{bns-8}$$
Выразим b:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
$$bns-8 = \frac{422(9x^2-8)}{p-q}$$
$$bns = \frac{422(9x^2-8)}{p-q} + 8$$
$$b = \frac{\frac{422(9x^2-8)}{p-q} + 8}{ns}$$
$$b = \frac{422(9x^2-8) + 8(p-q)}{ns(p-q)}$$
Выразим n:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
$$bns-8 = \frac{422(9x^2-8)}{p-q}$$
$$bns = \frac{422(9x^2-8)}{p-q} + 8$$
$$n = \frac{\frac{422(9x^2-8)}{p-q} + 8}{bs}$$
$$n = \frac{422(9x^2-8) + 8(p-q)}{bs(p-q)}$$
Выразим s:
$$\frac{9x^2-8}{p-q} = \frac{bns-8}{422}$$
$$bns-8 = \frac{422(9x^2-8)}{p-q}$$
$$bns = \frac{422(9x^2-8)}{p-q} + 8$$
$$s = \frac{\frac{422(9x^2-8)}{p-q} + 8}{bn}$$
$$s = \frac{422(9x^2-8) + 8(p-q)}{bn(p-q)}$$
Ответ: $$x = \pm \sqrt{\frac{(bns-8)(p-q)}{3798} + \frac{8}{9}}$$; $$p = \frac{422(9x^2-8)}{bns-8} + q$$; $$q = p - \frac{422(9x^2-8)}{bns-8}$$; $$b = \frac{422(9x^2-8) + 8(p-q)}{ns(p-q)}$$; $$n = \frac{422(9x^2-8) + 8(p-q)}{bs(p-q)}$$; $$s = \frac{422(9x^2-8) + 8(p-q)}{bn(p-q)}$$