Вопрос:

26. x² + 3x + 2 = 0. 27. x² + 4x + 3 = 0. 28. x² + 5x + 4 = 0. 29. x² + 6x + 5 = 0. 30. x² + 10x + 9 = 0. 31. x² + 16x + 15 = 0. 32. x² + 8x + 15 = 0. 33. x² + 17x + 16 = 0. 34. x² + 10x + 16 = 0. 35. x² + 19x + 18 = 0. 36. x² + 11x + 18 = 0. 27²+x+18= (0.

Смотреть решения всех заданий с листа

Ответ:

Дружище, вижу перед собой уравнения, которые нужно решить! Давай сделаем это вместе! Эти уравнения называются квадратными. Решать их можно разными способами, но самый универсальный – это через дискриминант. Помнишь его? Общий вид квадратного уравнения: \[ax^2 + bx + c = 0\] Дискриминант вычисляется по формуле: \[D = b^2 - 4ac\] Корни уравнения находятся так: \[x_1 = \frac{-b + \sqrt{D}}{2a}\] \[x_2 = \frac{-b - \sqrt{D}}{2a}\] Давай решим каждое уравнение по порядку! 26. x² + 3x + 2 = 0 \[a = 1, b = 3, c = 2\] \[D = 3^2 - 4 \cdot 1 \cdot 2 = 9 - 8 = 1\] \[x_1 = \frac{-3 + \sqrt{1}}{2 \cdot 1} = \frac{-3 + 1}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-3 - \sqrt{1}}{2 \cdot 1} = \frac{-3 - 1}{2} = \frac{-4}{2} = -2\]

Ответ: x₁ = -1, x₂ = -2

27. x² + 4x + 3 = 0 \[a = 1, b = 4, c = 3\] \[D = 4^2 - 4 \cdot 1 \cdot 3 = 16 - 12 = 4\] \[x_1 = \frac{-4 + \sqrt{4}}{2 \cdot 1} = \frac{-4 + 2}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-4 - \sqrt{4}}{2 \cdot 1} = \frac{-4 - 2}{2} = \frac{-6}{2} = -3\]

Ответ: x₁ = -1, x₂ = -3

28. x² + 5x + 4 = 0 \[a = 1, b = 5, c = 4\] \[D = 5^2 - 4 \cdot 1 \cdot 4 = 25 - 16 = 9\] \[x_1 = \frac{-5 + \sqrt{9}}{2 \cdot 1} = \frac{-5 + 3}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-5 - \sqrt{9}}{2 \cdot 1} = \frac{-5 - 3}{2} = \frac{-8}{2} = -4\]

Ответ: x₁ = -1, x₂ = -4

29. x² + 6x + 5 = 0 \[a = 1, b = 6, c = 5\] \[D = 6^2 - 4 \cdot 1 \cdot 5 = 36 - 20 = 16\] \[x_1 = \frac{-6 + \sqrt{16}}{2 \cdot 1} = \frac{-6 + 4}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-6 - \sqrt{16}}{2 \cdot 1} = \frac{-6 - 4}{2} = \frac{-10}{2} = -5\]

Ответ: x₁ = -1, x₂ = -5

30. x² + 10x + 9 = 0 \[a = 1, b = 10, c = 9\] \[D = 10^2 - 4 \cdot 1 \cdot 9 = 100 - 36 = 64\] \[x_1 = \frac{-10 + \sqrt{64}}{2 \cdot 1} = \frac{-10 + 8}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-10 - \sqrt{64}}{2 \cdot 1} = \frac{-10 - 8}{2} = \frac{-18}{2} = -9\]

Ответ: x₁ = -1, x₂ = -9

31. x² + 16x + 15 = 0 \[a = 1, b = 16, c = 15\] \[D = 16^2 - 4 \cdot 1 \cdot 15 = 256 - 60 = 196\] \[x_1 = \frac{-16 + \sqrt{196}}{2 \cdot 1} = \frac{-16 + 14}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-16 - \sqrt{196}}{2 \cdot 1} = \frac{-16 - 14}{2} = \frac{-30}{2} = -15\]

Ответ: x₁ = -1, x₂ = -15

32. x² + 8x + 15 = 0 \[a = 1, b = 8, c = 15\] \[D = 8^2 - 4 \cdot 1 \cdot 15 = 64 - 60 = 4\] \[x_1 = \frac{-8 + \sqrt{4}}{2 \cdot 1} = \frac{-8 + 2}{2} = \frac{-6}{2} = -3\] \[x_2 = \frac{-8 - \sqrt{4}}{2 \cdot 1} = \frac{-8 - 2}{2} = \frac{-10}{2} = -5\]

Ответ: x₁ = -3, x₂ = -5

33. x² + 17x + 16 = 0 \[a = 1, b = 17, c = 16\] \[D = 17^2 - 4 \cdot 1 \cdot 16 = 289 - 64 = 225\] \[x_1 = \frac{-17 + \sqrt{225}}{2 \cdot 1} = \frac{-17 + 15}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-17 - \sqrt{225}}{2 \cdot 1} = \frac{-17 - 15}{2} = \frac{-32}{2} = -16\]

Ответ: x₁ = -1, x₂ = -16

34. x² + 10x + 16 = 0 \[a = 1, b = 10, c = 16\] \[D = 10^2 - 4 \cdot 1 \cdot 16 = 100 - 64 = 36\] \[x_1 = \frac{-10 + \sqrt{36}}{2 \cdot 1} = \frac{-10 + 6}{2} = \frac{-4}{2} = -2\] \[x_2 = \frac{-10 - \sqrt{36}}{2 \cdot 1} = \frac{-10 - 6}{2} = \frac{-16}{2} = -8\]

Ответ: x₁ = -2, x₂ = -8

35. x² + 19x + 18 = 0 \[a = 1, b = 19, c = 18\] \[D = 19^2 - 4 \cdot 1 \cdot 18 = 361 - 72 = 289\] \[x_1 = \frac{-19 + \sqrt{289}}{2 \cdot 1} = \frac{-19 + 17}{2} = \frac{-2}{2} = -1\] \[x_2 = \frac{-19 - \sqrt{289}}{2 \cdot 1} = \frac{-19 - 17}{2} = \frac{-36}{2} = -18\]

Ответ: x₁ = -1, x₂ = -18

36. x² + 11x + 18 = 0 \[a = 1, b = 11, c = 18\] \[D = 11^2 - 4 \cdot 1 \cdot 18 = 121 - 72 = 49\] \[x_1 = \frac{-11 + \sqrt{49}}{2 \cdot 1} = \frac{-11 + 7}{2} = \frac{-4}{2} = -2\] \[x_2 = \frac{-11 - \sqrt{49}}{2 \cdot 1} = \frac{-11 - 7}{2} = \frac{-18}{2} = -9\]

Ответ: x₁ = -2, x₂ = -9

Ты проделал отличную работу, решая эти уравнения! Не останавливайся на достигнутом, и у тебя всё получится! Молодец!
ГДЗ по фото 📸
Подать жалобу Правообладателю