Решим данные примеры, используя формулы сокращенного умножения:
-
\[(x+1)^2 = x^2 + 2x + 1\]
-
\[(a-3)^2 = a^2 - 6a + 9\]
-
\[(y+3)^2 = y^2 + 6y + 9\]
-
\[(8-4)^2 = 4^2 = 16\]
-
\[(c+5)^2 = c^2 + 10c + 25\]
-
\[(6-d)^2 = 36 - 12d + d^2\]
-
\[(7+g)^2 = 49 + 14g + g^2\]
-
\[(8-h)^2 = 64 - 16h + h^2\]
-
\[(9+k)^2 = 81 + 18k + k^2\]
-
\[(10-m)^2 = 100 - 20m + m^2\]
-
\[(n+11)^2 = n^2 + 22n + 121\]
-
\[(p-12)^2 = p^2 - 24p + 144\]
-
\[(q+13)^2 = q^2 + 26q + 169\]
-
\[(r-14)^2 = r^2 - 28r + 196\]
-
\[(s+15)^2 = s^2 + 30s + 225\]
-
\[(t-16)^2 = t^2 - 32t + 256\]
-
\[(17+u)^2 = 289 + 34u + u^2\]
-
\[(18-v)^2 = 324 - 36v + v^2\]
-
\[(19+w)^2 = 361 + 38w + w^2\]
-
\[(20-z)^2 = 400 - 40z + z^2\]
-
\[(2x+y)^2 = 4x^2 + 4xy + y^2\]
-
\[(3a-b)^2 = 9a^2 - 6ab + b^2\]
-
\[(4c+2)^2 = 16c^2 + 16c + 4\]
-
\[(5d-3)^2 = 25d^2 - 30d + 9\]
-
\[(6h+4)^2 = 36h^2 + 48h + 16\]
-
\[(7k-2)^2 = 49k^2 - 28k + 4\]
-
\[(3m+4n)^2 = 9m^2 + 24mn + 16n^2\]
-
\[(5p-6q)^2 + 60pq = 25p^2 - 60pq + 36q^2 + 60pq = 25p^2 + 36q^2\]
-
\[2(x+y)^2 - 4xy = 2(x^2 + 2xy + y^2) - 4xy = 2x^2 + 4xy + 2y^2 - 4xy = 2x^2 + 2y^2\]
-
\[(3a-7b)^2 - 42ab = 9a^2 - 42ab + 49b^2 - 42ab = 9a^2 - 84ab + 49b^2\]
Ответ: См. выше