Решим уравнения:
$$9x^4 + 8x^2 - 1 = 0$$
Пусть $$t = x^2$$, тогда $$t \ge 0$$.
$$9t^2 + 8t - 1 = 0$$
$$D = 8^2 - 4 \cdot 9 \cdot (-1) = 64 + 36 = 100$$
$$t_1 = \frac{-8 + \sqrt{100}}{2 \cdot 9} = \frac{-8 + 10}{18} = \frac{2}{18} = \frac{1}{9}$$
$$t_2 = \frac{-8 - \sqrt{100}}{2 \cdot 9} = \frac{-8 - 10}{18} = \frac{-18}{18} = -1$$ (не подходит, так как $$t \ge 0$$)
$$x^2 = \frac{1}{9}$$
$$x_1 = \frac{1}{3}, x_2 = -\frac{1}{3}$$
$$x^4 - 2x^2 + 1 = 0$$
$$(x^2 - 1)^2 = 0$$
$$x^2 - 1 = 0$$
$$x^2 = 1$$
$$x_1 = 1, x_2 = -1$$
$$(3x + 1)^2 - 4(3x + 1) - 5 = 0$$
Пусть $$t = 3x + 1$$, тогда
$$t^2 - 4t - 5 = 0$$
$$D = (-4)^2 - 4 \cdot 1 \cdot (-5) = 16 + 20 = 36$$
$$t_1 = \frac{4 + \sqrt{36}}{2 \cdot 1} = \frac{4 + 6}{2} = \frac{10}{2} = 5$$
$$t_2 = \frac{4 - \sqrt{36}}{2 \cdot 1} = \frac{4 - 6}{2} = \frac{-2}{2} = -1$$
$$3x + 1 = 5$$ или $$3x + 1 = -1$$
$$3x = 4$$ или $$3x = -2$$
$$x_1 = \frac{4}{3}, x_2 = -\frac{2}{3}$$
$$4(0.5x - 2)^2 + 7(0.5x - 2) - 2 = 0$$
Пусть $$t = 0.5x - 2$$, тогда
$$4t^2 + 7t - 2 = 0$$
$$D = 7^2 - 4 \cdot 4 \cdot (-2) = 49 + 32 = 81$$
$$t_1 = \frac{-7 + \sqrt{81}}{2 \cdot 4} = \frac{-7 + 9}{8} = \frac{2}{8} = \frac{1}{4}$$
$$t_2 = \frac{-7 - \sqrt{81}}{2 \cdot 4} = \frac{-7 - 9}{8} = \frac{-16}{8} = -2$$
$$0.5x - 2 = \frac{1}{4}$$ или $$0.5x - 2 = -2$$
$$0.5x = \frac{9}{4}$$ или $$0.5x = 0$$
$$x_1 = \frac{9}{2}, x_2 = 0$$
$$(1 - 4x)^2 = 5(4x - 1) + 6$$
$$1 - 8x + 16x^2 = 20x - 5 + 6$$
$$16x^2 - 28x = 0$$
$$4x(4x - 7) = 0$$
$$x_1 = 0, x_2 = \frac{7}{4}$$
$$3(x^2 - 4)^2 - 7(x^2 - 4) + 4 = 0$$
Пусть $$t = x^2 - 4$$, тогда
$$3t^2 - 7t + 4 = 0$$
$$D = (-7)^2 - 4 \cdot 3 \cdot 4 = 49 - 48 = 1$$
$$t_1 = \frac{7 + \sqrt{1}}{2 \cdot 3} = \frac{7 + 1}{6} = \frac{8}{6} = \frac{4}{3}$$
$$t_2 = \frac{7 - \sqrt{1}}{2 \cdot 3} = \frac{7 - 1}{6} = \frac{6}{6} = 1$$
$$x^2 - 4 = \frac{4}{3}$$ или $$x^2 - 4 = 1$$
$$x^2 = \frac{16}{3}$$ или $$x^2 = 5$$
$$x_1 = \frac{4}{\sqrt{3}}, x_2 = -\frac{4}{\sqrt{3}}, x_3 = \sqrt{5}, x_4 = -\sqrt{5}$$
$$2(x^2 + x - 2)^2 + 3(x^2 + x - 2) - 2 = 0$$
Пусть $$t = x^2 + x - 2$$, тогда
$$2t^2 + 3t - 2 = 0$$
$$D = 3^2 - 4 \cdot 2 \cdot (-2) = 9 + 16 = 25$$
$$t_1 = \frac{-3 + \sqrt{25}}{2 \cdot 2} = \frac{-3 + 5}{4} = \frac{2}{4} = \frac{1}{2}$$
$$t_2 = \frac{-3 - \sqrt{25}}{2 \cdot 2} = \frac{-3 - 5}{4} = \frac{-8}{4} = -2$$
$$x^2 + x - 2 = \frac{1}{2}$$ или $$x^2 + x - 2 = -2$$
$$x^2 + x - \frac{5}{2} = 0$$ или $$x^2 + x = 0$$
Для $$x^2 + x - \frac{5}{2} = 0$$:
$$D = 1^2 - 4 \cdot 1 \cdot (-\frac{5}{2}) = 1 + 10 = 11$$
$$x_1 = \frac{-1 + \sqrt{11}}{2}, x_2 = \frac{-1 - \sqrt{11}}{2}$$
Для $$x^2 + x = 0$$:
$$x(x + 1) = 0$$
$$x_3 = 0, x_4 = -1$$
$$5 - 10(1 - x^2) + 5(x^2 - 1)^2 = 0$$
$$5 - 10 + 10x^2 + 5(x^4 - 2x^2 + 1) = 0$$
$$10x^2 + 5x^4 - 10x^2 + 5 - 5 = 0$$
$$5x^4 = 0$$
$$x = 0$$
$$(x - 2)^4 + 3(x - 2)^2 - 10 = 0$$
Пусть $$t = (x - 2)^2$$, тогда $$t \ge 0$$.
$$t^2 + 3t - 10 = 0$$
$$D = 3^2 - 4 \cdot 1 \cdot (-10) = 9 + 40 = 49$$
$$t_1 = \frac{-3 + \sqrt{49}}{2 \cdot 1} = \frac{-3 + 7}{2} = \frac{4}{2} = 2$$
$$t_2 = \frac{-3 - \sqrt{49}}{2 \cdot 1} = \frac{-3 - 7}{2} = \frac{-10}{2} = -5$$ (не подходит, так как $$t \ge 0$$)
$$(x - 2)^2 = 2$$
$$x - 2 = \sqrt{2}$$ или $$x - 2 = -\sqrt{2}$$
$$x_1 = 2 + \sqrt{2}, x_2 = 2 - \sqrt{2}$$
$$(x + 4)^4 - 6(x + 4)^2 - 7 = 0$$
Пусть $$t = (x + 4)^2$$, тогда $$t \ge 0$$.
$$t^2 - 6t - 7 = 0$$
$$D = (-6)^2 - 4 \cdot 1 \cdot (-7) = 36 + 28 = 64$$
$$t_1 = \frac{6 + \sqrt{64}}{2 \cdot 1} = \frac{6 + 8}{2} = \frac{14}{2} = 7$$
$$t_2 = \frac{6 - \sqrt{64}}{2 \cdot 1} = \frac{6 - 8}{2} = \frac{-2}{2} = -1$$ (не подходит, так как $$t \ge 0$$)
$$(x + 4)^2 = 7$$
$$x + 4 = \sqrt{7}$$ или $$x + 4 = -\sqrt{7}$$
$$x_1 = \sqrt{7} - 4, x_2 = -\sqrt{7} - 4$$
Ответ: Решения уравнений выше.