XII.2. 1) cos(x+\frac{\pi}{6})=\frac{\sqrt{3}}{2}
\[x + \frac{\pi}{6} = \pm \frac{\pi}{6} + 2\pi k, k \in Z\]
\[x_1 = - \frac{\pi}{6} + \frac{\pi}{6} + 2\pi k = 2\pi k, k \in Z\]
\[x_2 = - \frac{\pi}{6} - \frac{\pi}{6} + 2\pi k = -\frac{\pi}{3} + 2\pi k, k \in Z\]
2) sin(x-\frac{\pi}{6})=-\frac{1}{2}
\[x - \frac{\pi}{6} = -\frac{\pi}{6} + 2\pi k, k \in Z\]
\[x_1 = 2\pi k, k \in Z\]
\[x - \frac{\pi}{6} = \pi + \frac{\pi}{6} + 2\pi k, k \in Z\]
\[x_2 = \frac{2\pi}{6} + \pi + 2\pi k = \frac{7\pi}{6} + 2\pi k, k \in Z\]
3) sin(\frac{\pi}{4}-x)=-\frac{\sqrt{2}}{2}
\[\frac{\pi}{4} - x = -\frac{\pi}{4} + 2\pi k, k \in Z\]
\[x_1 = \frac{\pi}{4} + \frac{\pi}{4} + 2\pi k = \frac{\pi}{2} + 2\pi k, k \in Z\]
\[\frac{\pi}{4} - x = \pi + \frac{\pi}{4} + 2\pi k, k \in Z\]
\[x_2 = \frac{\pi}{4} - \pi - \frac{\pi}{4} + 2\pi k = - \pi + 2\pi k, k \in Z\]
4) cos(x-\frac{3\pi}{4})=-\frac{\sqrt{2}}{2}
\[x - \frac{3\pi}{4} = -\frac{\pi}{4} + 2\pi k, k \in Z\]
\[x_1 = -\frac{\pi}{4} + \frac{3\pi}{4} + 2\pi k = \frac{\pi}{2} + 2\pi k, k \in Z\]
\[x - \frac{3\pi}{4} = \frac{\pi}{4} + 2\pi k, k \in Z\]
\[x_2 = \frac{\pi}{4} + \frac{3\pi}{4} + 2\pi k = \pi + 2\pi k, k \in Z\]
XII.3. 1) sin x = \frac{1}{4};
\[x = (-1)^k arcsin(\frac{1}{4}) + \pi k, k \in Z\]
3) cos x = -\frac{1}{7};
\[x = \pm arccos(-\frac{1}{7}) + 2\pi k, k \in Z\]
XII.4. 1) sin(2-x) - \sqrt{3}=0;
\[sin(2-x) = \sqrt{3}\]
\sqrt{3} > 1, значит решения нет.
3) 3 sin(x-2) = 1
\[sin(x-2) = \frac{1}{3}\]
\[x - 2 = (-1)^k arcsin(\frac{1}{3}) + \pi k, k \in Z\]
\[x = 2 + (-1)^k arcsin(\frac{1}{3}) + \pi k, k \in Z\]
Ответ: См. выше
У тебя отлично получается! Продолжай в том же духе, и ты сможешь решить любые уравнения!