Вопрос:

Задание 33. Дан прямоугольник ABCD. Заполните пропуски в таблице.

Ответ:

ABADSABCDOMSABOSAMC
16848515
21016160840
383018
4104
5824
6603
7721
8216

Решение:

  1. SABCD = AB × AD = 6 × 8 = 48
  2. OM = \(\sqrt{OA^2 - AM^2}\) = \(\sqrt{5^2 - 3^2}\) = 4
  3. SABO = 1/2 × AB × OM = 1/2 × 6 × 5 = 15
  4. SAMC = 1/2 × AM × CD = 1/2 × 3 × 8 = 12
  5. AD = SABCD / AB = 160 / 10 = 16
  6. OM = \(\sqrt{OA^2 - AM^2}\) = \(\sqrt{10^2 - 6^2}\) = 8
  7. SABO = 1/2 × AB × OM = 1/2 × 10 × 8 = 40
  8. SAMC = 1/2 × AM × CD = 1/2 × 6 × 10 = 30
  9. SABO = 30, AB = 8, OM = 2SABO / AB = 2 × 30 / 8 = 7.5
  10. AD = 2 × OM = 2 × 7.5 = 15
  11. SABCD = AB × AD = 8 × 15 = 120
  12. SAMC = 1/2 × AM × CD = 1/2 × 7.5 × 8 = 30
  13. OM = 4, AD = 10, AM = AD / 2 = 10 / 2 = 5
  14. OA = \(\sqrt{OM^2 + AM^2}\) = \(\sqrt{4^2 + 5^2}\) = \(\sqrt{41}\)
  15. AB = 2 × OA = 2 × \(\sqrt{41}\)
  16. SABO = 1/2 × AB × OM = 1/2 × 2√41 × 4 = 4√41 ≈ 25.61
  17. SABCD = AB × AD = 2√41 × 10 = 20√41 ≈ 128.06
  18. SAMC = 1/2 × AM × CD = 1/2 × 5 × 2√41 = 5√41 ≈ 32.02
  19. AD = 8, SAMC = 24, AM = 2SAMC / CD = 2 × 24 / AB = 2 × 24 / AB
  20. OA = OD, => O - центр прямоугольника, => AO = BO = CO = DO
  21. MC = AM, AM = AD / 2 = 8 / 2 = 4
  22. AB = CD, => CD = 8, AM = 2SAMC / CD = 2 × 24 / 8 = 6
  23. AB = \(\sqrt{BC^2 + AC^2}\)
  24. OM = 1/2 AB, => AB = 2OM = 2 × 3 = 6
  25. AD = SABCD / AB = 60 / 6 = 10
  26. AM = AD / 2 = 10 / 2 = 5
  27. SABO = 1/2 × AB × OM = 1/2 × 6 × 3 = 9
  28. SAMC = 1/2 × AM × CD = 1/2 × 5 × 6 = 15
  29. AB = 7, SABO = 21, OM = 2SABO / AB = 2 × 21 / 7 = 6
  30. AD = 2 × OM = 2 × 6 = 12
  31. SABCD = AB × AD = 7 × 12 = 84
  32. AM = AD / 2 = 12 / 2 = 6
  33. SAMC = 1/2 × AM × CD = 1/2 × 6 × 7 = 21
  34. OM = 2, SAMC = 16, CD = 2SAMC / AM = 2 × 16 / AM
  35. AM = MC, AD = 2 × AM, CD = AB
  36. AD = BC, => AM = AD / 2
  37. SABO = SAB × OM / 2
  38. SABCD = AD × AB
  39. OM = AM2 + AO2, AO = 1/2 × AC, AC = \(\sqrt{AD^2 + DC^2}\)
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю