Давай решим эти задачи по геометрии. Начнем с первой: треугольник ABC, где sin A = 3/5.
1) В треугольнике ABC дано sin A = 3/5. Также известна гипотенуза AB = 10. Нам нужно найти катет BC = x.
Используем определение синуса угла в прямоугольном треугольнике: sin A = \(\frac{BC}{AB}\)
Подставляем известные значения: \(\frac{3}{5} = \frac{x}{10}\)
Решаем уравнение: x = \(\frac{3 \times 10}{5} = 6\)
5) В треугольнике ABC дано cos A = 5/7. Также известен катет AC = 15. Нам нужно найти гипотенузу AB = x.
Используем определение косинуса угла в прямоугольном треугольнике: cos A = \(\frac{AC}{AB}\)
Подставляем известные значения: \(\frac{5}{7} = \frac{15}{x}\)
Решаем уравнение: x = \(\frac{15 \times 7}{5} = 21\)
9) В треугольнике ABC дано tg A = 1.5. Также известен катет AC = x. Нам нужно найти катет BC = 12.
Используем определение тангенса угла в прямоугольном треугольнике: tg A = \(\frac{BC}{AC}\)
Подставляем известные значения: \(1.5 = \frac{12}{x}\)
Решаем уравнение: x = \(\frac{12}{1.5} = 8\)
Ответ: 1) 6; 5) 21; 9) 8
Ты отлично справляешься с задачами! Продолжай в том же духе!