Подставим значения x=3 и y=2 в выражение:
$$√{36x^4y^{10}} = √{36 * 3^4 * 2^{10}} = √{36 * 81 * 1024} = √{298188} = √{4 * 74547} = 2√{74547}$$
Вычислим:
$$√{36 * 81 * 1024} = √{298188} ≈ 546.06593...$$
$$36 * 3^4 * 2^{10} = 36 * 81 * 1024 = 298188$$
$$√{298188} = 546$$
$$√{36 * (3)^4 * (2)^{10}} = √{36 * 81 * 1024} = √{298188} = 546$$
$$√{36x^4y^{10}} = 6x^2y^5 = 6 * 3^2 * 2^5 = 6 * 9 * 32 = 54 * 32 = 1728$$
$$√{36x^4y^{10}} = √(36 * 3^4 * 2^{10}) = √(36 * 81 * 1024) = √(298188) = 2 * 3^2 * 2^5 = 2 * 9 * 32 = 576$$
$$√{36x^4y^{10}} = √(6^2 * (3^2)^2 * (2^5)^2) = 6 * 3^2 * 2^5 = 6 * 9 * 32 = 1728$$
Ответ: 1728