Решим задание 2. Разложим квадратные трехчлены на множители.
- $$x^2 - 6x + 8$$$$x^2 - 6x + 8 = x^2 - 6x + 9 - 1 = (x - 3)^2 - 1 = (x - 3 - 1)(x - 3 + 1) = (x - 4)(x - 2)$$
- $$x^2 - 4x + 3$$$$x^2 - 4x + 3 = x^2 - 4x + 4 - 1 = (x - 2)^2 - 1 = (x - 2 - 1)(x - 2 + 1) = (x - 3)(x - 1)$$
- $$x^2 - 2x - 3$$$$x^2 - 2x - 3 = x^2 - 2x + 1 - 4 = (x - 1)^2 - 4 = (x - 1 - 2)(x - 1 + 2) = (x - 3)(x + 1)$$
- $$x^2 - 4x - 5$$$$x^2 - 4x - 5 = x^2 - 4x + 4 - 9 = (x - 2)^2 - 9 = (x - 2 - 3)(x - 2 + 3) = (x - 5)(x + 1)$$
- $$x^2 - 12x + 35$$$$x^2 - 12x + 35 = x^2 - 12x + 36 - 1 = (x - 6)^2 - 1 = (x - 6 - 1)(x - 6 + 1) = (x - 7)(x - 5)$$
- $$x^2 - 4x - 12$$$$x^2 - 4x - 12 = x^2 - 4x + 4 - 16 = (x - 2)^2 - 16 = (x - 2 - 4)(x - 2 + 4) = (x - 6)(x + 2)$$
Ответ: смотри выше