Давай упростим выражения и найдем их значения по порядку:
1) \[(2 \cdot x)^4\] при \[x = 3\]
\[(2 \cdot 3)^4 = 6^4 = 1296\]
2) \(x^3 \cdot y^3\) при \(x = 2, y = 5\)
\[2^3 \cdot 5^3 = 8 \cdot 125 = 1000\]
3) \((3 \cdot a)^2\) при \(a = 4\)
\[(3 \cdot 4)^2 = 12^2 = 144\]
4) \((m \cdot n)^5\) при \(m = 1, n = 2\)
\[(1 \cdot 2)^5 = 2^5 = 32\]
5) \(x^2 \cdot 5^2\) при \(x = 2\)
\[2^2 \cdot 5^2 = 4 \cdot 25 = 100\]
6) \(\frac{x^2}{y^2}\) при \(x = 4, y = 2\)
\[\frac{4^2}{2^2} = \frac{16}{4} = 4\]
7) \(\frac{m^3}{n^3}\) при \(m = 7, n = 1\)
\[\frac{7^3}{1^3} = \frac{343}{1} = 343\]
8) \(a^{13} \cdot a^{11} : a^{21}\) при \(a = 5\)
\[a^{13+11-21} = a^3 = 5^3 = 125\]
9) \((b^3)^4 : b^{11}\) при \(b = 17\)
\[b^{3\cdot4} : b^{11} = b^{12} : b^{11} = b^{12-11} = b^1 = 17\]
10) \(x^{13} : (x^6)^2\) при \(x = 45\)
\[x^{13} : x^{6\cdot2} = x^{13} : x^{12} = x^{13-12} = x^1 = 45\]
11) \(\frac{y^{10} \cdot y^{12}}{y^{19}}\) при \(y = 3\)
\[\frac{y^{10+12}}{y^{19}} = \frac{y^{22}}{y^{19}} = y^{22-19} = y^3 = 3^3 = 27\]
12) \(\frac{(a^4)^5}{a^{18}}\) при \(a = 4\)
\[\frac{a^{4\cdot5}}{a^{18}} = \frac{a^{20}}{a^{18}} = a^{20-18} = a^2 = 4^2 = 16\]
13) \(\frac{(b^3)^4 \cdot b^{12}}{b^{21}}\) при \(b = 5\)
\[\frac{b^{3\cdot4} \cdot b^{12}}{b^{21}} = \frac{b^{12} \cdot b^{12}}{b^{21}} = \frac{b^{12+12}}{b^{21}} = \frac{b^{24}}{b^{21}} = b^{24-21} = b^3 = 5^3 = 125\]
14) \(\frac{a^{14} \cdot (b^2)^6}{(a \cdot b)^{12}}\) при \(a = 7, b = 8\)
\[\frac{a^{14} \cdot b^{2\cdot6}}{a^{12} \cdot b^{12}} = \frac{a^{14} \cdot b^{12}}{a^{12} \cdot b^{12}} = a^{14-12} = a^2 = 7^2 = 49\]
15) \(\frac{(x \cdot y)^{16}}{(x^2)^7 \cdot y^{15}}\) при \(x = 5, y = 3\)
\[\frac{x^{16} \cdot y^{16}}{x^{2\cdot7} \cdot y^{15}} = \frac{x^{16} \cdot y^{16}}{x^{14} \cdot y^{15}} = x^{16-14} \cdot y^{16-15} = x^2 \cdot y^1 = 5^2 \cdot 3 = 25 \cdot 3 = 75\]
Ответ: 1) 1296; 2) 1000; 3) 144; 4) 32; 5) 100; 6) 4; 7) 343; 8) 125; 9) 17; 10) 45; 11) 27; 12) 16; 13) 125; 14) 49; 15) 75
Ты молодец! У тебя всё получится!