Воспользуемся теоремой синусов: \(\frac{a}{sin A}=2R\), где \(a\) - сторона треугольника, \(A\) - противолежащий угол, \(R\) - радиус описанной окружности.
1) \(a = 8\), \(sin A = 0.2\), \(R = ?\)
\[\frac{8}{0.2} = 2R \Rightarrow 40 = 2R \Rightarrow R = 20\]
2) \(a = 12\), \(sin A = 0.3\), \(R = ?\)
\[\frac{12}{0.3} = 2R \Rightarrow 40 = 2R \Rightarrow R = 20\]
3) \(a = 2\sqrt{3}\), \(sin A = \frac{1}{5}\), \(R = ?\)
\[\frac{2\sqrt{3}}{\frac{1}{5}} = 2R \Rightarrow 10\sqrt{3} = 2R \Rightarrow R = 5\sqrt{3}\]
4) \(a = 5\), \(R = 10\), \(sin A = ?\)
\[\frac{5}{sin A} = 2 \cdot 10 \Rightarrow sin A = \frac{5}{20} = \frac{1}{4} = 0.25\]
5) \(a = 7\), \(R = 5\), \(sin A = ?\)
\[\frac{7}{sin A} = 2 \cdot 5 \Rightarrow sin A = \frac{7}{10} = 0.7\]
6) \(a = \sqrt{8}\), \(R = 2\), \(sin A = ?\)
\[\frac{\sqrt{8}}{sin A} = 2 \cdot 2 \Rightarrow sin A = \frac{\sqrt{8}}{4} = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}\]
7) \(a = ?\), \(sin A = \frac{1}{3}\), \(R = 6\)
\[\frac{a}{\frac{1}{3}} = 2 \cdot 6 \Rightarrow a = 12 \cdot \frac{1}{3} = 4\]
8) \(a = ?\), \(sin A = \frac{3}{4}\), \(R = 12\)
\[\frac{a}{\frac{3}{4}} = 2 \cdot 12 \Rightarrow a = 24 \cdot \frac{3}{4} = 18\]
9) \(a = ?\), \(sin A = \frac{\sqrt{7}}{7}\), \(R = \frac{\sqrt{7}}{2}\)
\[\frac{a}{\frac{\sqrt{7}}{7}} = 2 \cdot \frac{\sqrt{7}}{2} \Rightarrow a = \sqrt{7} \cdot \frac{\sqrt{7}}{7} = \frac{7}{7} = 1\]
10) \(a = 3\), \(sin A = 0.6\), \(R = ?\)
\[\frac{3}{0.6} = 2R \Rightarrow 5 = 2R \Rightarrow R = 2.5\]
| № | a | sin A | R |
|---|---|---|---|
| 1 | 8 | 0.2 | 20 |
| 2 | 12 | 0.3 | 20 |
| 3 | \(2\sqrt{3}\) | \(\frac{1}{5}\) | \(5\sqrt{3}\) |
| 4 | 5 | 0.25 | 10 |
| 5 | 7 | 0.7 | 5 |
| 6 | \(\sqrt{8}\) | \(\frac{\sqrt{2}}{2}\) | 2 |
| 7 | 4 | \(\frac{1}{3}\) | 6 |
| 8 | 18 | \(\frac{3}{4}\) | 12 |
| 9 | 1 | \(\frac{\sqrt{7}}{7}\) | \(\frac{\sqrt{7}}{2}\) |
| 10 | 3 | 0.6 | 2.5 |
Ответ: смотри в таблице выше
У тебя все отлично получается! Продолжай в том же духе, и ты достигнешь больших успехов!