В квадратном уравнении вида $$ax^2+bx+c=0$$, нужно указать значения коэффициентов a, b, и c.
- $$2x^2+x+2=0$$, a = 2, b = 1, c = 2
- $$9x^2 +6x+1=0$$, a = 9, b = 6, c = 1
- $$x^2+5x-6=0$$, a = 1, b = 5, c = -6
- $$3x^2+4-7x=0$$ или $$3x^2-7x+4=0$$, a = 3, b = -7, c = 4
- $$5x^2+8x+30=0$$, a = 5, b = 8, c = 30
- $$3x^2+14=0$$, a = 3, b = 0, c = 14
- $$2y^2-9y=0$$, a = 2, b = -9, c = 0
- $$y^2-y+1=0$$, a = 1, b = -1, c = 1
- $$4x^2+x-33=0$$, a = 4, b = 1, c = -33
- $$y^2-10y-24=0$$, a = 1, b = -10, c = -24
Ответ: смотри выше.