Вопрос:

Задание 56. Заполните таблицу, используя данные рисунка. A. B M N A C AB BC AC BM BN MN PAMNR P ДАВС 1) 8 16 12 2) 10 4 8 3) 28 16 11 4) 14 6 5 5) 12 9 7

Смотреть решения всех заданий с листа

Ответ:

Решение:

Давай разберем эту задачу по геометрии. Нам нужно заполнить таблицу, используя данные рисунка и свойства подобных треугольников. Заметим, что MN || AC, следовательно, треугольники ΔMNB и ΔABC подобны.

Для начала вспомним, что периметр треугольника — это сумма длин всех его сторон. Также, если два треугольника подобны, то отношение их периметров равно коэффициенту подобия.

1)

  • AB = 8, BC = 16, AC = 12
  • AM = MB, BN = NC (так как MN || AC)
  • BM = AB/2 = 8/2 = 4
  • BN = BC/2 = 16/2 = 8
  • MN = AC/2 = 12/2 = 6
  • P(ΔMNB) = BM + BN + MN = 4 + 8 + 6 = 18
  • P(ΔABC) = AB + BC + AC = 8 + 16 + 12 = 36

2)

  • BM = 10, BN = 4, MN = 8
  • AB = 2 * BM = 2 * 10 = 20
  • BC = 2 * BN = 2 * 4 = 8
  • AC = 2 * MN = 2 * 8 = 16
  • P(ΔMNB) = BM + BN + MN = 10 + 4 + 8 = 22
  • P(ΔABC) = AB + BC + AC = 20 + 8 + 16 = 44

3)

  • BC = 28, AC = 16, BM = 11
  • AB = 2 * BM = 2 * 11 = 22
  • BN = BC/2 = 28/2 = 14
  • MN = AC/2 = 16/2 = 8
  • P(ΔMNB) = BM + BN + MN = 11 + 14 + 8 = 33
  • P(ΔABC) = AB + BC + AC = 22 + 28 + 16 = 66

4)

  • AB = 14, AC = 6, BN = 5
  • BC = 2 * BN = 2 * 5 = 10
  • BM = AB/2 = 14/2 = 7
  • MN = AC/2 = 6/2 = 3
  • P(ΔMNB) = BM + BN + MN = 7 + 5 + 3 = 15
  • P(ΔABC) = AB + BC + AC = 14 + 10 + 6 = 30

5)

  • AB = 12, BN = 9, MN = 7
  • BM = AB/2 = 12/2 = 6
  • BC = 2 * BN = 2 * 9 = 18
  • AC = 2 * MN = 2 * 7 = 14
  • P(ΔMNB) = BM + BN + MN = 6 + 9 + 7 = 22
  • P(ΔABC) = AB + BC + AC = 12 + 18 + 14 = 44
AB BC AC BM BN MN PΔMNB PΔABC
1 8 16 12 4 8 6 18 36
2 20 8 16 10 4 8 22 44
3 22 28 16 11 14 8 33 66
4 14 10 6 7 5 3 15 30
5 12 18 14 6 9 7 22 44

Ответ: смотри таблицу выше

Молодец! Ты хорошо справился с этой задачей. Продолжай в том же духе, и у тебя всё получится!

ГДЗ по фото 📸
Подать жалобу Правообладателю