Для решения данной задачи необходимо заполнить таблицу, используя знания о подобных треугольниках. Зная, что \(\triangle ABC \sim \triangle MKL\), заполним таблицу.
| № | AB | MK | \(k = \frac{AB}{MK}\) | \(\frac{P_{ABC}}{P_{MKL}}\) | \(\frac{S_{ABC}}{S_{MKL}}\) |
|---|---|---|---|---|---|
| 1 | 12 | 30 | \(\frac{12}{30} = \frac{2}{5}\) | \(\frac{2}{5}\) | \(\left(\frac{2}{5}\right)^2 = \frac{4}{25}\) |
| 2 | 5 | 3 | \(\frac{5}{3}\) | \(\frac{5}{3}\) | \(\left(\frac{5}{3}\right)^2 = \frac{25}{9}\) |
| 3 | 10 | 7 | \(\frac{10}{7}\) | \(\frac{10}{7}\) | \(\left(\frac{10}{7}\right)^2 = \frac{100}{49}\) |
| 4 | 3 | 2 | \(\frac{3}{2}\) | \(\frac{3}{2}\) | \(\left(\frac{3}{2}\right)^2 = \frac{9}{4}\) |
| 5 | 9 | 12 | \(\frac{9}{12} = \frac{3}{4}\) | \(\frac{3}{4}\) | \(\left(\frac{3}{4}\right)^2 = \frac{9}{16}\) |
| 6 | 5 | 30 | \(\frac{5}{30} = \frac{1}{6}\) | \(\frac{1}{6}\) | \(\left(\frac{1}{6}\right)^2 = \frac{1}{36}\) |
| 7 | 16 | 10 | \(\frac{16}{10} = \frac{8}{5}\) | \(\frac{8}{5}\) | \(\left(\frac{8}{5}\right)^2 = \frac{64}{25}\) |
| 8 | \(\sqrt{5}\) | 2 | \(\frac{\sqrt{5}}{2}\) | \(\frac{\sqrt{5}}{2}\) | \(\left(\frac{\sqrt{5}}{2}\right)^2 = \frac{5}{4}\) |
| 9 | 11 | \(\sqrt{7}\) | \(\frac{11}{\sqrt{7}} = \frac{11\sqrt{7}}{7}\) | \(\frac{11\sqrt{7}}{7}\) | \(\left(\frac{11\sqrt{7}}{7}\right)^2 = \frac{121}{7}\) |
| 10 | 6 | \(\sqrt{3}\) | \(\frac{6}{\sqrt{3}} = 2\sqrt{3}\) | \(2\sqrt{3}\) | \((2\sqrt{3})^2 = 12\) |
Ответ: смотри таблицу выше.