Решение:
Пусть вся работа равна 1.
Краткая запись:
1 мастер – 6 часов
2 мастер – 12 часов
Вместе – ? часов
- Определим, какую часть работы выполняет первый мастер за 1 час:
$$1 \div 6 = \frac{1}{6}$$
- Определим, какую часть работы выполняет второй мастер за 1 час:
$$1 \div 12 = \frac{1}{12}$$
- Определим, какую часть работы выполняют оба мастера за 1 час:
$$\frac{1}{6} + \frac{1}{12} = \frac{2}{12} + \frac{1}{12} = \frac{3}{12} = \frac{1}{4}$$
- Определим, за сколько часов выполнят заказ оба мастера, работая вместе:
$$1 \div \frac{1}{4} = 1 \times \frac{4}{1} = 4$$
Ответ: за 4 часа.