Вопрос:

ЗАДАНИЕ №4 Упростите выражение: 4 22 17 2z3xy + 2yz5 - 3x2z²) - 3xz (2xyz 2 3(2xy2yz 9 5 - 2xz + 2xz) = = 4 В ответе запишите многочлен в стандартном виде.

Смотреть решения всех заданий с листа

Ответ:

Привет! Давай упростим это выражение вместе. Будем делать все последовательно, шаг за шагом.

Исходное выражение:

\[3xz^4(2xy^2z \cdot 3xy + 2y^3z^5 - 3x^2z^2) - 3(2xy^2 \cdot 2yz^9 - 2xz^5 + 2x^3z^6) = \]

Сначала раскроем скобки в первом слагаемом:

\[3xz^4 \cdot 2xy^2z \cdot 3xy = 18x^3y^3z^5\]

\[3xz^4 \cdot 2y^3z^5 = 6xy^3z^9\]

\[3xz^4 \cdot (-3x^2z^2) = -9x^3z^6\]

Теперь раскроем скобки во втором слагаемом:

\[-3(2xy^2 \cdot 2yz^9) = -3(4xy^3z^9) = -12xy^3z^9\]

\[-3(-2xz^5) = 6xz^5\]

\[-3(2x^3z^6) = -6x^3z^6\]

Теперь соберем все вместе:

\[18x^3y^3z^5 + 6xy^3z^9 - 9x^3z^6 - 12xy^3z^9 + 6xz^5 - 6x^3z^6 = \]

Приведем подобные слагаемые:

\[18x^3y^3z^5 + (6xy^3z^9 - 12xy^3z^9) + (-9x^3z^6 - 6x^3z^6) + 6xz^5 = \]

\[18x^3y^3z^5 - 6xy^3z^9 - 15x^3z^6 + 6xz^5 = \]

Запишем многочлен в стандартном виде:

\[-6xy^3z^9 - 15x^3z^6 + 18x^3y^3z^5 + 6xz^5\]

Ответ: -6xy³z⁹ - 15x³z⁶ + 18x³y³z⁵ + 6xz⁵

ГДЗ по фото 📸
Подать жалобу Правообладателю