Вопрос:

Замените знак * таким одночленом, чтобы полученное выражение можно было представить в виде квадрата двучлена: * - 64pq + 64q^2. Выражение типа b² запишите без пробелов как bb.

Смотреть решения всех заданий с листа

Ответ:

Чтобы выражение можно было представить в виде квадрата двучлена, необходимо, чтобы оно соответствовало формуле квадрата разности: $$(a - b)^2 = a^2 - 2ab + b^2$$. В нашем случае дано выражение: $$* - 64pq + 64q^2$$ Здесь $$64q^2 = (8q)^2$$, следовательно, $$b = 8q$$. $$-64pq = -2ab$$, следовательно, $$-64pq = -2 * a * (8q)$$. Отсюда можно найти $$a$$: $$-64pq = -16aq$$ $$a = \frac{-64pq}{-16q} = 4p$$ Теперь, когда мы нашли $$a$$, можем вычислить $$a^2$$: $$a^2 = (4p)^2 = 16p^2$$ Таким образом, вместо * должно стоять $$16p^2$$, чтобы выражение стало квадратом двучлена. Проверим: $$16p^2 - 64pq + 64q^2 = (4p)^2 - 2 * (4p) * (8q) + (8q)^2 = (4p - 8q)^2$$ Ответ: 16pp
ГДЗ по фото 📸
Подать жалобу Правообладателю