a) Дано:
$$A = 4 - 2xy + 5x^2 - 3y^2$$
$$B = 4x^2 - 3xy + 2y^2 - 2$$
1) Найдем A + B:
$$A + B = (4 - 2xy + 5x^2 - 3y^2) + (4x^2 - 3xy + 2y^2 - 2) =$$
$$= 4 - 2xy + 5x^2 - 3y^2 + 4x^2 - 3xy + 2y^2 - 2 = $$
$$= (5x^2 + 4x^2) + (-2xy - 3xy) + (-3y^2 + 2y^2) + (4 - 2) = $$
$$= 9x^2 - 5xy - y^2 + 2$$
2) Найдем A - B:
$$A - B = (4 - 2xy + 5x^2 - 3y^2) - (4x^2 - 3xy + 2y^2 - 2) =$$
$$= 4 - 2xy + 5x^2 - 3y^2 - 4x^2 + 3xy - 2y^2 + 2 =$$
$$= (5x^2 - 4x^2) + (-2xy + 3xy) + (-3y^2 - 2y^2) + (4 + 2) =$$
$$= x^2 + xy - 5y^2 + 6$$
3) Найдем B - A:
$$B - A = (4x^2 - 3xy + 2y^2 - 2) - (4 - 2xy + 5x^2 - 3y^2) =$$
$$= 4x^2 - 3xy + 2y^2 - 2 - 4 + 2xy - 5x^2 + 3y^2 =$$
$$= (4x^2 - 5x^2) + (-3xy + 2xy) + (2y^2 + 3y^2) + (-2 - 4) =$$
$$= -x^2 - xy + 5y^2 - 6$$
Ответ: A + B = $$9x^2 - 5xy - y^2 + 2$$, A - B = $$x^2 + xy - 5y^2 + 6$$, B - A = $$-x^2 - xy + 5y^2 - 6$$
б) Дано:
$$A = 3a^2 - 5ab - (b^2 - 2) = 3a^2 - 5ab - b^2 + 2$$
$$B = 5a^2 + 7ab + 1 - 3b^2$$
1) Найдем A + B:
$$A + B = (3a^2 - 5ab - b^2 + 2) + (5a^2 + 7ab + 1 - 3b^2) =$$
$$= 3a^2 - 5ab - b^2 + 2 + 5a^2 + 7ab + 1 - 3b^2 =$$
$$= (3a^2 + 5a^2) + (-5ab + 7ab) + (-b^2 - 3b^2) + (2 + 1) =$$
$$= 8a^2 + 2ab - 4b^2 + 3$$
2) Найдем A - B:
$$A - B = (3a^2 - 5ab - b^2 + 2) - (5a^2 + 7ab + 1 - 3b^2) =$$
$$= 3a^2 - 5ab - b^2 + 2 - 5a^2 - 7ab - 1 + 3b^2 =$$
$$= (3a^2 - 5a^2) + (-5ab - 7ab) + (-b^2 + 3b^2) + (2 - 1) =$$
$$= -2a^2 - 12ab + 2b^2 + 1$$
3) Найдем B - A:
$$B - A = (5a^2 + 7ab + 1 - 3b^2) - (3a^2 - 5ab - b^2 + 2) =$$
$$= 5a^2 + 7ab + 1 - 3b^2 - 3a^2 + 5ab + b^2 - 2 =$$
$$= (5a^2 - 3a^2) + (7ab + 5ab) + (-3b^2 + b^2) + (1 - 2) =$$
$$= 2a^2 + 12ab - 2b^2 - 1$$
Ответ: A + B = $$8a^2 + 2ab - 4b^2 + 3$$, A - B = $$-2a^2 - 12ab + 2b^2 + 1$$, B - A = $$2a^2 + 12ab - 2b^2 - 1$$