Контрольные задания >
Запишите градусную меру углов и длины отрезков, используя чертежи трапеций (см. рис. 17).
а) ABCD - трапеция.
AH =
CH =
DH =
AD =
∠B =
∠BCD =
ZHCD =
6) МРКТ — равнобедренная трапеция.
PT =
ZPKT =
ZPMT =
ZT =
Вопрос:
Запишите градусную меру углов и длины отрезков, используя чертежи трапеций (см. рис. 17).
а) ABCD - трапеция.
AH =
CH =
DH =
AD =
∠B =
∠BCD =
ZHCD =
6) МРКТ — равнобедренная трапеция.
PT =
ZPKT =
ZPMT =
ZT =
Ответ:
Решение
a) ABCD - трапеция
- AH = BC = 3 см (так как ABCH - прямоугольник)
- CH = AB = 4 см (так как ABCH - прямоугольник)
- DH = AD - AH = AD - BC. Так как ∠CDH = 45°, то треугольник CDH - равнобедренный, значит DH = CH = 4 см
- AD = AH + DH = 3 см + 4 см = 7 см
- ∠B = 90°
- ∠BCD = 180° - ∠CDA = 180° - 45° = 135° (так как сумма углов, прилежащих к боковой стороне трапеции, равна 180°)
- ∠HCD = ∠BCD - ∠BCH = 135° - 90° = 45°
б) МРКТ — равнобедренная трапеция
- PT = MK = 5 см (боковые стороны равнобедренной трапеции равны)
- ∠PKT = 105° (дано)
- ∠PMT = ∠PKT = 105° (углы при основании равнобедренной трапеции равны)
- ∠T = 180° - ∠PMT = 180° - 105° = 75° (сумма углов, прилежащих к боковой стороне трапеции, равна 180°)
Ответ:
a) ABCD
- AH = 3 см
- CH = 4 см
- DH = 4 см
- AD = 7 см
- ∠B = 90°
- ∠BCD = 135°
- ∠HCD = 45°
б) МРКТ
- PT = 5 см
- ∠PKT = 105°
- ∠PMT = 105°
- ∠T = 75°
Смотреть решения всех заданий с листа