|
AB |
BC |
AC |
OP |
PT |
OT |
k = AB/OP |
PABC |
POPT |
| 1. |
12 |
16 |
18 |
18 |
24 |
27 |
0.666... ≈ 0.67 |
46 |
69 |
| 2. |
6 |
9 |
12 |
12 |
18 |
24 |
0.5 |
27 |
54 |
| 3. |
12 |
15 |
21 |
4 |
5 |
7 |
3 |
48 |
16 |
| 4. |
3.5 |
4 |
5.25 |
14 |
16 |
21 |
0.25 |
12.75 |
51 |
| 5. |
22 |
24 |
24 |
11 |
12 |
12 |
2 |
66 |
33 |
Пояснения к строкам таблицы:
Строка 1:
- k = AB/OP = 12/18 = 2/3 ≈ 0.67
- PABC = 12 + 16 + 18 = 46
- POPT = 18 + 24 + 27 = 69
Строка 2:
- k = 0.5 (из условия)
- OP = AB / k = 6 / 0.5 = 12
- PT = BC / k = 9 / 0.5 = 18
- OT = AC / k = 12 / 0.5 = 24
- PABC = 6 + 9 + 12 = 27
- POPT = 12 + 18 + 24 = 54
Строка 3:
- k = 3 (из условия)
- OP = AB / k = 12 / 3 = 4
- PT = BC / k = 15 / 3 = 5
- OT = AC / k = 21 / 3 = 7
- PABC = 12 + 15 + 21 = 48
- POPT = 4 + 5 + 7 = 16
Строка 4:
- OT / PT = 18 / 16, k = AB / OP = 2.5
- AC / PT = 18, следовательно АC = 18 * 2.5 = 4.5.
- Так как OT = 2.5 * OT = 2.5 * 8 = 20.
- BC / PT = 20, следовательно BC = 4.
Строка 5:
- k = 2 (из условия)
- OP = AB / k = 22 / 2 = 11
- PT = BC / k = 24 / 2 = 12
- OT = AC / k = 24 / 2 = 12
- PABC = 22 + 24 + 20 = 66
- POPT = 11 + 12 + 10 = 33