ГДЗ по алгебре и начала математического анализа 10 класс Колягин Задание 1210

Авторы:
Тип:учебник

Задание 1210

\[\boxed{\mathbf{1210}\mathbf{.}}\]

\[1)\cos{2x} + 4\sin^{4}x = 8\cos^{6}x\]

\[\cos{2x} + 4 \cdot \left( \frac{1 - \cos{2x}}{2} \right)^{2} =\]

\[= 8 \cdot \left( \frac{1 + \cos{2x}}{2} \right)^{3}\]

\[t = \cos{2x}:\]

\[t + 4 \cdot \left( \frac{1 - t}{2} \right)^{2} -\]

\[- 8 \cdot \left( \frac{1 + t}{2} \right)^{3} = 0\]

\[t^{3} + 2t^{2} + 4t = 0\]

\[t\left( t^{2} + 2t + 4 \right) = 0\]

\[t = 0;\]

\[t^{2} + 2t + 4 = 0\]

\[D = 4 - 16 = - 12 < 0 \rightarrow нет\]

\[\ корней.\]

\[\cos{2x} = 0\]

\[2x = \frac{\pi}{2} + \pi k\]

\[x = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]

\[Ответ:\ \frac{\pi}{4} + \frac{\text{πk}}{2}\text{.\ }\]

\[2)\cos^{4}x + \sin^{8}x = 1\]

\[\cos^{4}x + \left( 1 - \cos x \right)^{4} = 0\]

\[Пусть\ t = \cos^{2}x:\]

\[t^{2} + (1 - t)^{4} - 1 = 0\]

\[t^{4} - 4t^{3} + 7t^{2} - 4t = 0\]

\[P(0) = P(1) = 0;\]

\[t(t - 1) = t^{2} - t:\]

\[t(t - 1)\left( t^{2} - 3t + 4 \right) = 0\]

\[t = 0:\]

\[\cos^{2}x = 0\]

\[x = \frac{\pi}{2} + \pi k.\]

\[t = 1:\]

\[\cos^{2}x = 1\]

\[\cos x = \pm 1\]

\[x = \pi k.\]

\[t^{2} - 3t + 4 = 0\]

\[D = 9 - 16 = - 7 < 0 \rightarrow нет\ \]

\[корней.\]

\[Ответ:\ \frac{\pi}{2} + \pi k;\ \ \ \pi k.\]

\[3)\ 2\sin^{2}x + \frac{1}{4}\cos^{3}{2x} = 1\]

\[2\sin^{2}x - \left( \cos^{2}x + \sin^{2}x \right) +\]

\[+ \frac{1}{4}\cos^{3}{2x} = 0\]

\[- \left( \cos^{2}x - \sin^{2}x \right) +\]

\[+ \frac{1}{4}\cos^{3}{2x} = 0\]

\[- \cos{2x} + \frac{1}{4}\cos^{3}{2x} = 0\]

\[Пусть\ y = \cos{2x}:\]

\[\frac{1}{4}y^{3} - y = 0\]

\[y\left( \frac{1}{4}y^{2} - 1 \right) = 0\]

\[Первое\ уравнение:\]

\[\cos{2x} = 0\]

\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]

\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]

\[Второе\ уравнение:\]

\[\frac{1}{4}\cos^{2}{2x} - 1 = 0\]

\[\frac{1}{4}\cos^{2}{2x} = 1\]

\[\cos^{2}{2x} = 4\]

\[\cos{2x} = \pm 2 - корней\ нет.\]

\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]

\[4)\sin^{2}{2x} + \cos^{2}{3x} = 1 +\]

\[+ 4\sin x\]

\[\sin^{2}{2x} - \left( 1 - \cos^{2}{3x} \right) = 4\sin x\]

\[\sin^{2}{2x} - \sin^{2}{3x} = 4\sin x\]

\[\left( \sin{2x} + \sin{3x} \right) \bullet\]

\[\bullet \left( \sin{2x} - \sin{3x} \right) = 4\sin x\]

\[2 \bullet \sin\frac{2x + 3x}{2} \bullet \cos\frac{2x - 3x}{2} \bullet 2 \bullet\]

\[\bullet \sin\frac{2x - 3x}{2} \bullet \cos\frac{2x + 3x}{2} =\]

\[= 4\sin x\]

\[4 \bullet \sin\frac{5x}{2} \bullet \cos\left( - \frac{x}{2} \right) \bullet \sin\left( - \frac{x}{2} \right) \bullet\]

\[\bullet \cos\frac{5x}{2} = 4\sin x\]

\[- 2 \bullet \sin{5x} \bullet \cos\frac{x}{2} \bullet \sin\frac{x}{2} = 4\sin x\]

\[- \sin x \bullet \sin{5x} - 4\sin x = 0\]

\[- \sin x\left( \sin{5x} + 4 \right) = 0\]

\[Первое\ уравнение:\]

\[\sin x = 0\]

\[x = \arcsin 0 + \pi n = \pi n.\]

\[Второе\ уравнение:\]

\[\sin{5x} + 4 = 0\]

\[\sin{5x} = - 4 - корней\ нет.\]

\[Ответ:\ \ \pi n.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам