ГДЗ по алгебре и начала математического анализа 10 класс Алимов Задание 1561

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 1561

\[\boxed{\mathbf{1561}\mathbf{.}}\]

\[1)\ 16^{\sin^{2}x} + 16^{\cos^{2}x} = 10\ \ \ \ \ | \bullet 16^{\cos^{2}x}\]

\[16^{\sin^{2}x + \cos^{2}x} + 16^{2\cos^{2}x} = 10 \bullet 16^{\cos^{2}x}\]

\[16^{2\cos^{2}x} - 10 \bullet 16^{\cos^{2}x} + 16^{1} = 0\]

\[y = 16^{\cos^{2}x}:\]

\[y^{2} - 10y + 16 = 0\]

\[D = 100 - 64 = 36\]

\[y_{1} = \frac{10 - 6}{2} = 2;\]

\[y_{2} = \frac{10 + 6}{2} = 8.\]

\[1)\ 16^{\cos^{2}x} = 2\]

\[2^{4\cos^{2}x} = 2^{1}\]

\[4\cos^{2}x = 1\]

\[\cos^{2}x = \frac{1}{4}\]

\[\cos x = \pm \frac{1}{2}\]

\[x = \pm \arccos\frac{1}{2} + \pi n\]

\[x = \pm \frac{\pi}{3} + \pi n.\]

\[2)\ 16^{\cos^{2}x} = 8\]

\[2^{4\cos^{2}x} = 2^{3}\]

\[4\cos^{2}x = 3\]

\[\cos^{2}x = \frac{3}{4}\]

\[\cos x = \pm \frac{\sqrt{3}}{2}\]

\[x = \pm \arccos\frac{\sqrt{3}}{2} + \pi n\]

\[x = \pm \frac{\pi}{6} + \pi n.\]

\[Ответ:\ \ \pm \frac{\pi}{3} + \pi n;\ \ \pm \frac{\pi}{6} + \pi n.\]

\[2)\ \left( \sqrt{3 + \sqrt{8}} \right)^{x} + \left( \sqrt{3 - \sqrt{8}} \right)^{x} = 34\]

\[\left( \sqrt{\left( 1 + \sqrt{2} \right)^{2}} \right)^{x} + \left( \sqrt{\left( 1 - \sqrt{2} \right)^{2}} \right)^{x} = 34\]

\[\left| 1 + \sqrt{2} \right|^{x} + \left| 1 - \sqrt{2} \right|^{x} = 34\]

\[\left( 1 + \sqrt{2} \right)^{2x} - 34\left( 1 + \sqrt{2} \right)^{x} + 1 = 0\]

\[y = \left( 1 + \sqrt{2} \right)^{x}:\]

\[y^{2} - 34y + 1 = 0\]

\[D = 1156 - 4 = 1152 = 576 \bullet 2\]

\[y = \frac{34 \pm \sqrt{1152}}{2} = \frac{34 \pm 24\sqrt{2}}{2} =\]

\[= 17 \pm 12\sqrt{2} =\]

\[= 9 \pm 12\sqrt{2} + 8 = \left( 3 \pm 2\sqrt{2} \right)^{2} =\]

\[= \left( 1 \pm 2\sqrt{2} + 2 \right)^{2} = \left( 1 \pm \sqrt{2} \right)^{4}.\]

\[1)\ \left( 1 + \sqrt{2} \right)^{x} = \left( 1 - \sqrt{2} \right)^{4} =\]

\[= \frac{\left( 1 - \sqrt{2} \right)^{4} \bullet \left( 1 + \sqrt{2} \right)^{4}}{\left( 1 + \sqrt{2} \right)^{4}} =\]

\[= \frac{(1 - 2)^{4}}{\left( 1 + \sqrt{2} \right)^{4}} = \frac{1}{\left( 1 + \sqrt{2} \right)^{4}} =\]

\[= \left( 1 + \sqrt{2} \right)^{- 4}\]

\[x = - 4.\]

\[2)\ \left( 1 + \sqrt{2} \right)^{x} = \left( 1 + \sqrt{2} \right)^{4}\]

\[x = 4.\]

\[Ответ:\ \ x = \pm 4.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам