\[\boxed{\mathbf{1358}\mathbf{.}}\]
\[1)\ x^{1 + \lg x} = 10x\]
\[\log_{x}x^{1 + \lg x} = \log_{x}{10x}\]
\[1 + \lg x = \log_{x}10 + \log_{x}x\]
\[1 + \lg x = \frac{\lg 10}{\lg x} + 1\]
\[\lg x = \frac{1}{\lg x}\ \ \ \ \ | \bullet \lg x\]
\[\lg^{2}x = 1\]
\[\lg x = \pm 1.\]
\[1)\ \lg x = - 1\]
\[\lg x = \lg 10^{- 1}\]
\[x = 0,1.\]
\[2)\ \lg x = 1\]
\[\lg x = \lg 10\]
\[x = 10.\]
\[Ответ:\ \ x_{1} = 0,1;\ \ x_{2} = 10.\]
\[2)\ x^{\lg x} = 100x\]
\[\log_{x}x^{\lg x} = \log_{x}{100x}\]
\[\lg x = \log_{x}100 + \log_{x}x\]
\[\lg x = \frac{\lg 100}{\lg x} + 1\]
\[\lg x = \frac{2}{\lg x} + 1\ \ \ \ \ | \bullet \lg x\]
\[\lg^{2}x = 2 + \lg x\]
\[y = \lg x:\]
\[y^{2} = 2 + y\]
\[y^{2} - y - 2 = 0\]
\[D = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2} = - 1;\]
\[y_{2} = \frac{1 + 3}{2} = 2.\]
\[1)\ \lg x = - 1\]
\[\lg x = \lg 10^{- 1}\]
\[x = 0,1.\]
\[2)\ \lg x = 2\]
\[\lg x = \lg 10^{2}\]
\[x = 100.\]
\[Ответ:\ \ x_{1} = 0,1;\ \ x_{2} = 100.\]
\[3)\log_{2}\left( 17 - 2^{x} \right) + \log_{2}\left( 2^{x} + 15 \right) = 8\]
\[\log_{2}\left( \left( 17 - 2^{x} \right)\left( 2^{x} + 15 \right) \right) = \log_{2}2^{8}\]
\[17 \bullet 2^{x} + 255 - 2^{2x} - 15 \bullet 2^{x} = 256\]
\[2^{2x} - 2 \bullet 2^{x} + 1 = 0\]
\[\left( 2^{x} - 1 \right)^{2} = 0\]
\[2^{x} - 1 = 0\]
\[2^{x} = 1\]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]
\[4)\log_{2}\left( 3 + 2^{x} \right) + \log_{2}\left( 5 - 2^{x} \right) = 4\]
\[\log_{2}\left( \left( 3 + 2^{x} \right)\left( 5 - 2^{x} \right) \right) = \log_{2}2^{4}\]
\[15 - 3 \bullet 2^{x} + 5 \bullet 2^{x} - 2^{2x} = 16\]
\[2^{2x} - 2 \bullet 2^{x} + 1 = 0\]
\[\left( 2^{x} - 1 \right)^{2} = 0\]
\[2^{x} - 1 = 0\]
\[2^{x} = 1\]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]